Influence Function 線形回帰での例

Influence Function 線形回帰での例#

参考:Influence Functionでインスタンスの重要度を解釈する - Dropout

\[\begin{split} \begin{align} L(z, \theta) &= (y - x^\top \theta)^2\\ \nabla_{\theta} L(z, \theta) &= - 2 (y - x^\top \theta) x = -2xy + 2 (x^\top \theta) x\\ R(\theta) &= (y - X\theta)^\top (y - X\theta) \\ \nabla_{\theta} R(\theta) &= -2 X^\top y + 2 (X^\top X) \theta \\ H = \nabla_{\theta}^2 R(\theta) &= 2 (X^\top X)\\ \hat{\theta} &= (X^\top X)^{-1} X^\top y \end{align} \end{split}\]

なので

\[\begin{split} \begin{align} \mathcal{I}_{up, params}(z) &= -H^{-1}_{\hat{\theta}} \nabla_{\theta} L(z, \hat{\theta})\\ &= -( 2 X^\top X )^{-1} ( - 2 (y - x^\top \hat\theta) x ) \\ \mathcal{I}_{up, loss}(z, z_{test}) &= - \nabla_{\theta} L(z_{test}, \hat{\theta})^\top H^{-1}_{\hat{\theta}} \nabla_{\theta} L(z, \hat{\theta}) \\ &= (2 (y_{test} - x_{test}^\top \hat\theta) x_{test} )^\top ( 2X^\top X )^{-1} ( - 2 (y - x^\top \hat\theta) x ) \end{align} \end{split}\]
def influence_params(x, y, X, theta):
    hessian = 2 * (X.T @ X)
    nabla_l_train = - 2 * (y - x.T @ theta) * x
    return np.linalg.inv(hessian) @ nabla_l_train
def influence_loss(x, y, x_test, y_test, X, theta):
    nabla_l_test = (y_test - x_test.T @ theta) * x_test
    hessian = 2 * (X.T @ X)
    nabla_l_train = - 2 * (y - x.T @ theta) * x
    return nabla_l_test.T @ np.linalg.inv(hessian) @ nabla_l_train
import numpy as np

# generate data
n, p = 100, 2
np.random.seed(0)
X = np.random.uniform(size=(n, p))
theta = np.random.uniform(size=p).round(1)
print(theta)
e = np.random.normal(scale=0.1, size=n)
y = X @ theta + e
[0.3 0.7]
class LinearRegression:

    def fit(self, X, y):
        self.theta_ = np.linalg.inv(X.T @ X) @ (X.T @ y)
        return self

    def predict(self, X):
        return X @ self.theta_
# データ全件でのモデル
model = LinearRegression().fit(X, y)
theta_hat = model.theta_
theta_hat
array([0.27816619, 0.71295385])

Influence (params)#

LOO#

\[ \hat{\theta}_{-z} - \hat{\theta} \]
# LOO

diffs = np.array([])
theta_wo_z = np.array([])
for i in range(n):
    X_wo_z = np.concatenate((X[:i, ], X[(i+1):, ]), axis=0)
    y_wo_z = np.concatenate((y[:i], y[(i+1):]), axis=0)
    assert X_wo_z.shape[0] == n - 1
    assert y_wo_z.shape[0] == n - 1
    theta_wo_z_i = LinearRegression().fit(X_wo_z, y_wo_z).theta_
    diff_i = np.linalg.norm(theta_wo_z_i - theta_hat)
    diffs = np.append(diffs, diff_i)
    theta_wo_z = np.concatenate([theta_wo_z, theta_wo_z_i])

theta_wo_z = theta_wo_z.reshape(n, -1)
# LOO (params)

diffs = np.array([])
for i in range(n):
    X_wo_z = np.concatenate((X[:i, ], X[(i+1):, ]), axis=0)
    y_wo_z = np.concatenate((y[:i], y[(i+1):]), axis=0)
    assert X_wo_z.shape[0] == n - 1
    assert y_wo_z.shape[0] == n - 1
    theta_wo_z_i = LinearRegression().fit(X_wo_z, y_wo_z).theta_
    diff_i = np.linalg.norm(theta_wo_z_i - theta_hat)  # ノルムがいいのかはわからんがL2ノルムにしてみる
    diffs = np.append(diffs, diff_i)
diffs_loo = diffs
idxs = np.argsort(diffs)[::-1]
X[idxs][:5]
array([[0.43758721, 0.891773  ],
       [0.0202184 , 0.83261985],
       [0.7936977 , 0.22392469],
       [0.65632959, 0.13818295],
       [0.0641475 , 0.69247212]])

Influence Function#

\[ -\frac{1}{n}\mathcal{I}_{up, params} \]
# influence (params)
diffs = np.array([])
for i in range(n):
    values = influence_params(x=X[i], y=y[i], X=X, theta=theta_hat)
    loo_approx = - (1/n) * values
    diff_i = np.linalg.norm(values)  # ノルムがいいのかはわからんがL2ノルムにしてみる
    diffs = np.append(diffs, diff_i)

diffs_if = diffs
idxs = np.argsort(diffs)[::-1]
X[idxs][:5]
array([[0.43758721, 0.891773  ],
       [0.0202184 , 0.83261985],
       [0.7936977 , 0.22392469],
       [0.65632959, 0.13818295],
       [0.0641475 , 0.69247212]])
import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=[4,4])
ax.scatter(diffs_if, diffs_loo)
# ax.set(title="", xlabel="Influence (params)", ylabel="LOO (params)")
# ax.plot(diffs_if, diffs_if, color="gray", alpha=0.5)
ax.set(title=r"$\hat{θ}_{-z} - \hat{θ}$ and $-\frac{1}{n} \mathcal{I}_{up,params}(z)$",
       xlabel=r"Influence (params) = $- \frac{1}{n} \mathcal{I}_{up,params}(z)$",
       ylabel=r"LOO (params) = $\hat{θ}_{-z} - \hat{θ}$")
ax.grid(True)
fig.show()
../../_images/88d4c3b169829c67441dd73e230a1b0943d4b5152042d02f0c58187de958308a.png

Influence (loss)#

i = 7
X_test = X[[i], ]
y_test = y[i]
X_test
array([[0.07103606, 0.0871293 ]])
def loss(y_pred, y_true):
    return (y_pred - y_true)**2
pred = model.predict(X_test)
loss_original = loss(pred, y_test)
loss_original
array([0.00720099])

LOO#

\[ L(z_{test}, \hat{\theta}_{-z}) - L(z_{test}, \hat{\theta}) \]
# LOO (params)

diffs = np.array([])
for i in range(n):
    X_wo_z = np.concatenate((X[:i, ], X[(i+1):, ]), axis=0)
    y_wo_z = np.concatenate((y[:i], y[(i+1):]), axis=0)
    assert X_wo_z.shape[0] == n - 1
    assert y_wo_z.shape[0] == n - 1
    model_wo_z_i = LinearRegression().fit(X_wo_z, y_wo_z)
    pred_loo = model_wo_z_i.predict(X_test)
    loss_loo = loss(pred_loo, y_test)
    diff_i = loss_loo - loss_original
    diffs = np.append(diffs, diff_i)
diffs_loo = diffs
idxs = np.argsort(diffs)[::-1]
X[idxs][:5]
array([[0.43758721, 0.891773  ],
       [0.72525428, 0.50132438],
       [0.97861834, 0.79915856],
       [0.5759465 , 0.9292962 ],
       [0.34535168, 0.92808129]])

Influence Function#

\[ -\frac{1}{n}\mathcal{I}_{up, loss} \]
# influence (params)

diffs = np.array([])
for i in range(n):
    value = influence_loss(x=X[i], y=y[i], x_test=X_test[0], y_test=y_test, X=X, theta=theta_hat)
    diff_i = - (1/n) * value
    diffs = np.append(diffs, diff_i)

diffs_if = diffs
idxs = np.argsort(diffs)[::-1]
X[idxs][:5]
array([[0.43758721, 0.891773  ],
       [0.72525428, 0.50132438],
       [0.97861834, 0.79915856],
       [0.5759465 , 0.9292962 ],
       [0.34535168, 0.92808129]])
import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=[4,4])
ax.scatter(diffs_if, diffs_loo)
ax.set(title=r"$L(z_{test}, \hat{θ}_{-z}) - L(z_{test}, \hat{θ})$ and $-\frac{1}{n} \mathcal{I}_{up,loss}(z, z_{test})$",
       xlabel=r"Influence (loss) = $-\frac{1}{n} \mathcal{I}_{up,loss}(z, z_{test})$",
       ylabel=r"LOO (loss) = $L(z_{test}, \hat{θ}_{-z}) - L(z_{test}, \hat{θ})$")
# ax.set(title="", xlabel="Influence (loss)", ylabel="LOO (loss)")
# ax.plot(diffs_if, diffs_if, color="gray", alpha=0.5)
ax.grid(True)
fig.show()
../../_images/e3b05b32bf73e9862c1ccf8c51812e1df39a4ebb689abfc5d1a3b8c3dff83940.png