Quantized Training of LightGBM#

概要#

LightGBMのような最近のGBDTで使われている決定木では、葉の出力\(w\)は誤差関数の2次のテイラー近似をもとに、以下のように計算される(このあたりはChen & Guestrin, 2016が比較的わかりやすい)

\[ w^*_s = -\frac{\sum_{i\in I_s} g_i}{\sum_{i\in I_s} h_i} \]

ここで\(g_i\)は誤差関数の勾配、\(h_i\)は誤差関数の二次の微分である。

この\(g_i, h_i\)を32bitや64bitのfloatではなく、4bitなどの低ビット幅の整数で保持しよう、というのが量子化である。

現代的なGBDTの学習の流れ#

Shi et al. (2022). Quantized training of gradient boosting decision trees.より)

まず、GBDTの学習の流れを再確認し、notationを決める

勾配ブースティング決定木(GBDT)は複数の決定木を組み合わせるアンサンブル学習のアプローチをとる。

各iterationでは現状の予測値に基づくGradientとHessianを計算し、負の勾配を近似するように決定木を学習する。

\(k+1\)回目の反復において、現状のサンプル\(i\)の予測値を\(\hat{y}_i^k\)とすると、誤差関数\(l\)のgradient\(g_i\)とhessian\(h_i\)

\[ g_i=\frac{\partial l\left(\hat{y}_i^k, y_i\right)}{\partial \hat{y}_i^k}, \quad h_i=\frac{\partial^2 l\left(\hat{y}_i^k, y_i\right)}{\left(\partial \hat{y}_i^k\right)^2} \]

となる。

\(s\)について、葉に含まれるデータの番号(index)の集合を\(I_s\)とする。葉\(s\)における\(g_i\)\(h_i\)のサンプルについての合計を

\[ G_s = \sum_{i\in I_s} g_i, \quad H_s = \sum_{i\in I_s} h_i \]

と表記することにすると、反復\(k+1\)回目において木構造が固定された下で、訓練誤差は二次のテイラー近似により

\[ \mathcal{L}_{k+1} \approx \mathcal{C}+\sum_s\left(\frac{1}{2} H_s w_s^2+G_s w_s\right) \]

と表すことができる。

ここで\(\mathcal{C}\)は定数で、\(w_s\)は葉\(s\)の予測値である。近似誤差の最小化により最適値が得られる

\[ w_s^*=-\frac{G_s}{H_s}, \quad \mathcal{L}_s^*=-\frac{1}{2} \cdot \frac{G_s^2}{H_s} \]

最適な木構造を探すのは困難であるため、木は貪欲かつ反復的に訓練される。

\(s\)を2つの子\(s_1, s_2\)に分割するとき、近似損失の減少分は次のように計算できる。

\[ \Delta \mathcal{L}_{s \rightarrow s_1, s_2}=\mathcal{L}_s^*-\mathcal{L}_{s_1}^*-\mathcal{L}_{s_2}^*=\frac{G_{s_1}^2}{2 H_{s_1}}+\frac{G_{s_2}^2}{2 H_{s_2}}-\frac{G_s^2}{2 H_s} \]

\(s\)にとっての最適な分割条件の探索は、すべての特徴のすべての分割候補点を数え上げて、最も損失の減少が多いものが選ばれる。

LightGBMでは最適分割点の探索を高速化するためにヒストグラムを使う。histogram based GBDTの基本的なアイデアは特徴量の値をbinsに分割する。histogramのbinsは、そのbinに含まれるデータのgradientsとhessiansの総和が記録されている。binsの境界値のみが分割候補点になる。

Algorithm 1 Histogram Construction for Leaf \(s\)

Input: Gradients \(\left\{g_1, \ldots, g_N\right\}\), Hessians \(\left\{h_1, \ldots, h_N\right\}\)
Input: Bin data data \([N][J]\), Data indices in leaf \(s\) denoted by \(I_s\)
Output: Histogram \({hist}_s\)
for \(i \in I_s, j \in\{1 \ldots J\}\) do
bin \(\leftarrow \operatorname{data}[i][j]\)
\(hist_s[j][bin] . g \leftarrow\) \(hist_s[j][\) bin \(] . g+g_i\)
\(hist_s[j][b i n] . h \leftarrow\) \(hist_s[j][b i n] . h+h_i\)
end for

伝統的には\(g_i\)\(h_i\)には32-bitの浮動小数点数が使われ、histogramへの累計には32-bitか64-bitの浮動小数点数が必要になる。

Framework for Quantized Training#

まず\(g_i\)\(h_i\)を低ビット幅(low-bitwidth)の整数\(\tilde{g}_i, \tilde{h}_i\)に量子化する。

すべての訓練サンプルの\(g_i\)\(h_i\)のレンジを、等しい長さの区間へと分割する。\(B\)-bit \((B \geq 2)\) 整数の勾配を使うために、\(2^B - 2\)個の区間を使う。各区間の最後は整数値と対応するため、全体で\(2^B - 1\)個の整数値になる。

1次の導関数\(g_i\)は正の値も負の値もとるため、半分の区間は負の値のために割り当てられ、残り半分は正の値に割り当てられる。

2次の導関数\(h_i\)は一般的にGBDTで使われる誤差関数のほとんどすべてが非負の値をもつため、以下の議論では\(h_i \geq 0\)と仮定する。

それゆえ、区間の長さは\(g_i, h_i\)それぞれに対して

\[ \delta_g=\frac{\max _{i \in[N]}\left|g_i\right|}{2^{B-1}-1}, \quad \delta_h=\frac{\max _{i \in[N]} h_i}{2^B-2} \]

となる。これにより、低ビット幅の勾配は

\[ \tilde{g}_i=\operatorname{Round}\left(\frac{g_i}{\delta_g}\right), \quad \tilde{h}_i=\text { Round }\left(\frac{h_i}{\delta_h}\right) \]

で計算できる。ここで\(\text{Round}()\)は浮動小数点数を定数に丸める関数である。

なお、もし\(h_i\)が定数なら、量子化する必要はない。

詳細なrounding strategyは4.2節に書く。

Algorithm 1の\(g_i, h_i\)\(\tilde{g}_i, \tilde{h}_i\)に置き換える。もとの勾配の和の計算は整数の和の計算に置き換えられ、histogram binsの統計量\(g\)\(h\)は整数になる。

B = 2
g = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
delta_g = max([abs(gi) for gi in g]) / (2**(B-1) - 1)
tilde_g = [round(gi / delta_g) for gi in g]
tilde_g
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

分岐による損失の減少分

\[ \Delta \mathcal{L}_{s \rightarrow s_1, s_2}=\mathcal{L}_s^*-\mathcal{L}_{s_1}^*-\mathcal{L}_{s_2}^*=\frac{G_{s_1}^2}{2 H_{s_1}}+\frac{G_{s_2}^2}{2 H_{s_2}}-\frac{G_s^2}{2 H_s} \]

\(G_{s_1}, H_{s_1}, G_{s_2}, H_{s_2}\)は整数の\(\tilde{G}_{s_1}, \tilde{H}_{s_1}, \tilde{G}_{s_2}, \tilde{H}_{s_2}\)に置き換えられる。

我々は2から4bitの量子化された勾配が十分よい精度をもたらすことを発見した。また、6.1節と7.4.3節で議論するが、ヒストグラムにおける累積した低ビット幅の勾配には16bit整数で十分であった。それゆえ、大部分の演算は低ビット幅の整数によって行われる。浮動小数点数の演算が必要になるのは本来の勾配とヘシアンとsplit gainを計算するときだけである。とくに、split gainは

\[ \Delta \tilde{\mathcal{L}}_{s \rightarrow s_1, s_2} = \frac{ \left(\tilde{G}_{s_1} \delta_g\right)^2}{2 \tilde{H}_{s_1} \delta_h} +\frac{\left(\tilde{G}_{s_2} \delta_g\right)^2}{2 \tilde{H}_{s_2} \delta_h} -\frac{\left(\tilde{G}_s \delta_g\right)^2}{2 \tilde{H}_s \delta_h} \]

と推定される。ここで勾配の統計量のスケールは\(\delta_g\)\(\delta_h\)を乗じることで復元される。

Figure 1は量子化されたGBDTのワークフローを要約している。

Rounding Strategies and Leaf-Value Refitting#

最も近い整数への丸め込み(round-to-nearest)

\[\begin{split} \operatorname{RN}(x)= \begin{cases}\lfloor x\rfloor, & x<\lfloor x\rfloor+\frac{1}{2} \\ \lceil x\rceil, & x \geq\lfloor x\rfloor+\frac{1}{2}\end{cases} \end{split}\]

では精度が大幅に低下することがわかった。

代わりに、 確率的な丸め込み(stochastic rounding)

\[\begin{split} \operatorname{SR}(x)=\left\{\begin{array}{lll} \lfloor x\rfloor, & \text { w.p. } & \lceil x\rceil-x \\ \lceil x\rceil, & \text { w.p. } & x-\lfloor x\rfloor \end{array}\right. \end{split}\]

を用いる(\(\text{w.p.}\)はwith probabilityの意味)。 確率的な丸め込みでは\(\mathbb{E}[\widetilde{g}_i]=g_i / \delta_g\)であるような値\(\widetilde{g}_i\)がランダムな値\(\lfloor g_i / \delta_g\rfloor\)\(\lceil g_i / \delta_g\rceil\)をとる。

split gainは勾配の総和で計算されるため、確率的な丸め込みは総和への不偏推定量となる。すなわち

\[ \mathbb{E}[\widetilde{G} \delta_g]=G, \quad \mathbb{E}[\widetilde{H} \delta_h] = H \]

である。

確率的な丸め込みの重要性はニューラルネットの量子化学習[13]とDimBoost[16]のヒストグラム分解でも認識されている。

量子化された勾配により、最適なleaf valueは

\[ \widetilde{w}_s^*=-\frac{\widetilde{G}_s \delta_g}{\widetilde{H}_s \delta_h} \]

となり、多くのケースで\(\widetilde{w}_s^*\)は良い結果をもたらすのに十分である。

しかし、ランキングなど一部の損失関数では、木の成長が止まったあとに元の勾配でleaf valueをrefittingする方法が精度を向上させることがわかった。BitBoost [8] も同様の方法をとっているが、BitBoostと違い、本手法はsplit gainのヘシアンを木の成長中も考慮するがBitBoostではヘシアンを定数として扱い真のヘシアンをleaf valueのrefittingのときだけ使う。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


def stochastic_round(x: float) -> int:
    f = np.floor(x)
    c = np.ceil(x)
    return np.random.choice([f, c], p=[c - x, x - f])
    
np.random.seed(0)
e = 0.001
x = np.linspace(e, 1-e, 1000)
y = [stochastic_round(xi) for xi in x]


x_c = pd.cut(x, bins=10)

def mid_value(cat):
    return cat.left + ((cat.right - cat.left) / 2)

cat_to_mid = {cat: mid_value(cat) for cat in x_c.categories}

df = pd.DataFrame({
    "x": x,
    "y": y,
    "x_c": x_c.map(cat_to_mid, na_action=None)
})
agg = df.groupby("x_c", observed=True)["y"].agg(["mean", "std"]).reset_index()

fig, ax = plt.subplots()
ax.scatter(x, y, alpha=0.1, label="StochasticRound(x)", edgecolors="steelblue")
ax.errorbar(agg["x_c"], agg["mean"], yerr=agg["std"], alpha=0.9,
            fmt="o", color="gray", label="mean & std of StochasticRound(x)")
            # xerr=(x.max() - x.min()) / 10 / 2,

# for cat in x_c.categories:
#     ax.axvline(cat.left, alpha=0.5, linestyle="--", color="gray")
# ax.axvline(cat.right, alpha=0.5, linestyle="--", color="gray")

ax.set(
    xlabel="x",
    ylabel="StochasticRound(x)",
    title="",
)
ax.legend()
fig.show()
../../_images/011c89809bcdfcc6e8fad1c9d7113f7fb67b9b729ad4bec788fe1f897ae5a5de.png

確率的な丸め込みによる#

確率的な丸め込みにより、「split gain推定の誤差は高い確率で小さい値に制限される」というsection 5の定理が提供できる。

実装#

注意点

  • 精度を上げるため、量子化前の勾配でleaf valueを再計算する場合、計算時間もモデルのサイズも悪化する

実験:量子化の有無による差を比較#

import lightgbm as lgb
print(f"{lgb.__version__=}")


def gen_dataset(seed=0):
    from sklearn.datasets import make_regression
    X, y = make_regression(n_samples=5_000, n_features=10, noise=0.5, random_state=seed)

    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=0)
    X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, train_size=0.8, random_state=0)

    import lightgbm as lgb
    lgb_train = lgb.Dataset(X_train, y_train)
    lgb_val = lgb.Dataset(X_val, y_val, reference=lgb_train)
    return lgb_train, lgb_val, X_test, y_test


def train(params, lgb_train, lgb_val):
    logs = {}
    model = lgb.train(
        params,
        lgb_train,
        num_boost_round=100_000,
        valid_sets=[lgb_train, lgb_val],
        callbacks=[
            lgb.early_stopping(stopping_rounds=100),
            lgb.log_evaluation(period=100000),
            lgb.record_evaluation(logs)
        ]
    )
    return model, logs


from tqdm import tqdm
from time import time
from pathlib import Path
from sklearn.metrics import root_mean_squared_error
import joblib
import pandas as pd


def get_model_size(model):
    model_path = Path("model.joblib")
    with open(model_path, "wb") as f:
        joblib.dump(model, f)
    
    size_mb = model_path.stat().st_size / 1024**2
    model_path.unlink()
    return size_mb


def trials(name, params, n_trials=10):
    train_times = []
    pred_times = []
    rmses = []
    model_sizes = []
    for i in tqdm(range(n_trials)):
        lgb_train, lgb_val, X_test, y_test = gen_dataset(seed=i)

        t0 = time()
        model, _logs = train(params, lgb_train, lgb_val)
        t1 = time()
        train_times.append(t1 - t0)

        t0 = time()
        y_pred = model.predict(X_test)
        t1 = time()
        pred_times.append(t1 - t0)

        rmse = root_mean_squared_error(y_test, y_pred)
        rmses.append(rmse)

        size = get_model_size(model)
        model_sizes.append(size)
    result = pd.DataFrame({
        "Training time": train_times,
        "Inference time": pred_times,
        "RMSE": rmses,
        "Model Size (MB)": model_sizes
    })
    result["条件"] = name
    return result


import os
print(f"{os.cpu_count()=}")
n_trials = 10
results = []

params = {
    'device_type': 'cpu',
    'num_threads': os.cpu_count(),
    'objective': 'mse',
    'metric': 'rmse',
    'num_leaves': 31,
    'learning_rate': 0.1,
    'feature_fraction': 0.8,
    'verbose': -1,
    'seed': 0,
    'deterministic': True,
}

# 量子化なし
result = trials(name="量子化なし", params=params, n_trials=n_trials)
results.append(result)

# 量子化あり
params["use_quantized_grad"] = True
params["num_grad_quant_bins"] = 4

params["quant_train_renew_leaf"] = False
result = trials(name="量子化あり・Renewなし", params=params, n_trials=n_trials)
results.append(result)

params["quant_train_renew_leaf"] = True
result = trials(name="量子化あり・Renewあり", params=params, n_trials=n_trials)
results.append(result)
Hide code cell output
lgb.__version__='4.5.0'
os.cpu_count()=4
  0%|          | 0/10 [00:00<?, ?it/s]
Training until validation scores don't improve for 100 rounds
Early stopping, best iteration is:
[1781]	training's rmse: 0.115047	valid_1's rmse: 41.0182
 10%|█         | 1/10 [00:01<00:12,  1.44s/it]
Training until validation scores don't improve for 100 rounds
Early stopping, best iteration is:
[1650]	training's rmse: 0.0972269	valid_1's rmse: 27.826
 20%|██        | 2/10 [00:02<00:10,  1.37s/it]
Training until validation scores don't improve for 100 rounds
Early stopping, best iteration is:
[3078]	training's rmse: 0.00376388	valid_1's rmse: 46.6675
 30%|███       | 3/10 [00:05<00:12,  1.80s/it]
Training until validation scores don't improve for 100 rounds
 40%|████      | 4/10 [00:06<00:09,  1.65s/it]
Early stopping, best iteration is:
[1642]	training's rmse: 0.119979	valid_1's rmse: 32.1281
Training until validation scores don't improve for 100 rounds
Early stopping, best iteration is:
[3313]	training's rmse: 0.00137981	valid_1's rmse: 25.5328
 50%|█████     | 5/10 [00:08<00:09,  1.95s/it]
Training until validation scores don't improve for 100 rounds
 60%|██████    | 6/10 [00:10<00:06,  1.72s/it]
Early stopping, best iteration is:
[1616]	training's rmse: 0.130356	valid_1's rmse: 36.1539
Training until validation scores don't improve for 100 rounds
Early stopping, best iteration is:
[3704]	training's rmse: 0.000824281	valid_1's rmse: 39.8657
 70%|███████   | 7/10 [00:12<00:06,  2.05s/it]
Training until validation scores don't improve for 100 rounds
 80%|████████  | 8/10 [00:14<00:03,  1.73s/it]
Early stopping, best iteration is:
[1251]	training's rmse: 0.252942	valid_1's rmse: 17.2222
Training until validation scores don't improve for 100 rounds
 90%|█████████ | 9/10 [00:15<00:01,  1.56s/it]
Early stopping, best iteration is:
[1454]	training's rmse: 0.237015	valid_1's rmse: 38.8602
Training until validation scores don't improve for 100 rounds
Early stopping, best iteration is:
[2294]	training's rmse: 0.020392	valid_1's rmse: 23.7294
100%|██████████| 10/10 [00:16<00:00,  1.62s/it]
100%|██████████| 10/10 [00:16<00:00,  1.69s/it]

  0%|          | 0/10 [00:00<?, ?it/s]
Training until validation scores don't improve for 100 rounds
 10%|█         | 1/10 [00:00<00:08,  1.05it/s]
Early stopping, best iteration is:
[1093]	training's rmse: 0.508697	valid_1's rmse: 36.2037
Training until validation scores don't improve for 100 rounds
 20%|██        | 2/10 [00:01<00:05,  1.48it/s]
Early stopping, best iteration is:
[427]	training's rmse: 3.18506	valid_1's rmse: 24.8431
Training until validation scores don't improve for 100 rounds
 30%|███       | 3/10 [00:02<00:05,  1.27it/s]
Early stopping, best iteration is:
[944]	training's rmse: 0.878267	valid_1's rmse: 41.9654
Training until validation scores don't improve for 100 rounds
 40%|████      | 4/10 [00:03<00:04,  1.31it/s]
Early stopping, best iteration is:
[677]	training's rmse: 1.58701	valid_1's rmse: 29.5476
Training until validation scores don't improve for 100 rounds
 50%|█████     | 5/10 [00:03<00:03,  1.44it/s]
Early stopping, best iteration is:
[572]	training's rmse: 1.90926	valid_1's rmse: 22.9558
Training until validation scores don't improve for 100 rounds
 60%|██████    | 6/10 [00:04<00:03,  1.23it/s]
Early stopping, best iteration is:
[1201]	training's rmse: 0.331789	valid_1's rmse: 33.0541
Training until validation scores don't improve for 100 rounds
 70%|███████   | 7/10 [00:05<00:02,  1.10it/s]
Early stopping, best iteration is:
[1292]	training's rmse: 0.278446	valid_1's rmse: 36.915
Training until validation scores don't improve for 100 rounds
 80%|████████  | 8/10 [00:06<00:01,  1.35it/s]
Early stopping, best iteration is:
[261]	training's rmse: 3.74099	valid_1's rmse: 16.3203
Training until validation scores don't improve for 100 rounds
 90%|█████████ | 9/10 [00:07<00:00,  1.27it/s]
Early stopping, best iteration is:
[991]	training's rmse: 0.710558	valid_1's rmse: 36.1448
Training until validation scores don't improve for 100 rounds
100%|██████████| 10/10 [00:07<00:00,  1.35it/s]
100%|██████████| 10/10 [00:07<00:00,  1.30it/s]

Early stopping, best iteration is:
[636]	training's rmse: 1.47725	valid_1's rmse: 22.2107
  0%|          | 0/10 [00:00<?, ?it/s]
Training until validation scores don't improve for 100 rounds
Early stopping, best iteration is:
[2524]	training's rmse: 0.237055	valid_1's rmse: 33.2555
 10%|█         | 1/10 [00:02<00:18,  2.08s/it]
Training until validation scores don't improve for 100 rounds
 20%|██        | 2/10 [00:03<00:13,  1.69s/it]
Early stopping, best iteration is:
[1635]	training's rmse: 0.713115	valid_1's rmse: 23.7664
Training until validation scores don't improve for 100 rounds
 20%|██        | 2/10 [00:04<00:19,  2.47s/it]

---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
Cell In[3], line 117
    114 results.append(result)
    116 params["quant_train_renew_leaf"] = True
--> 117 result = trials(name="量子化あり・Renewあり", params=params, n_trials=n_trials)
    118 results.append(result)

Cell In[3], line 62, in trials(name, params, n_trials)
     59 lgb_train, lgb_val, X_test, y_test = gen_dataset(seed=i)
     61 t0 = time()
---> 62 model, _logs = train(params, lgb_train, lgb_val)
     63 t1 = time()
     64 train_times.append(t1 - t0)

Cell In[3], line 21, in train(params, lgb_train, lgb_val)
     19 def train(params, lgb_train, lgb_val):
     20     logs = {}
---> 21     model = lgb.train(
     22         params,
     23         lgb_train,
     24         num_boost_round=100_000,
     25         valid_sets=[lgb_train, lgb_val],
     26         callbacks=[
     27             lgb.early_stopping(stopping_rounds=100),
     28             lgb.log_evaluation(period=100000),
     29             lgb.record_evaluation(logs)
     30         ]
     31     )
     32     return model, logs

File /usr/local/lib/python3.10/site-packages/lightgbm/engine.py:307, in train(params, train_set, num_boost_round, valid_sets, valid_names, feval, init_model, feature_name, categorical_feature, keep_training_booster, callbacks)
    295 for cb in callbacks_before_iter:
    296     cb(
    297         callback.CallbackEnv(
    298             model=booster,
   (...)
    304         )
    305     )
--> 307 booster.update(fobj=fobj)
    309 evaluation_result_list: List[_LGBM_BoosterEvalMethodResultType] = []
    310 # check evaluation result.

File /usr/local/lib/python3.10/site-packages/lightgbm/basic.py:4136, in Booster.update(self, train_set, fobj)
   4133 if self.__set_objective_to_none:
   4134     raise LightGBMError("Cannot update due to null objective function.")
   4135 _safe_call(
-> 4136     _LIB.LGBM_BoosterUpdateOneIter(
   4137         self._handle,
   4138         ctypes.byref(is_finished),
   4139     )
   4140 )
   4141 self.__is_predicted_cur_iter = [False for _ in range(self.__num_dataset)]
   4142 return is_finished.value == 1

KeyboardInterrupt: 
import matplotlib.pyplot as plt
import seaborn as sns
import japanize_matplotlib

res = pd.concat(results)
fig, axes = plt.subplots(figsize=[10, 8], nrows=2, ncols=2)
fig.subplots_adjust(hspace=0.3)

i, j = 0, 0
col = 'Training time'
sns.kdeplot(data=res, x=col, hue="条件", common_norm=False, ax=axes[i, j])
axes[i, j].set(title=f"{col}")

i, j = 0, 1
col = 'Inference time'
sns.kdeplot(data=res, x=col, hue="条件", common_norm=False, ax=axes[i, j])
axes[i, j].set(title=f"{col}")

i, j = 1, 0
col = 'RMSE'
sns.kdeplot(data=res, x=col, hue="条件", common_norm=False, ax=axes[i, j])
axes[i, j].set(title=f"{col}")

i, j = 1, 1
col = 'Model Size (MB)'
sns.kdeplot(data=res, x=col, hue="条件", common_norm=False, ax=axes[i, j])
axes[i, j].set(title=f"{col}")

fig.show()
../../_images/4bc101bb6882000b0a0a664a9b8ec57d080e67b69a1a6264475b96cef4daf604.png