練習問題メモ 01

練習問題メモ 01#

  1. 次の関数を微分せよ。

\(\text { (1) } y=x^3-3 x^2+2\)

\[ \frac{dy}{dx} = 3x^2 - 6x \]

\(\text { (2) } y=x(x-2)(x-4)(x-6)\)

\[\begin{split} x(x-2)(x-4)(x-6) = (x^2 - 2x)(x-4)(x-6)\\ = (x^3 - 6x^2 + 8x)(x-6)\\ = x^4 - 6x^3 - 6x^3 + 36x^2 + 8x^2 - 48x\\ = x^4 - 12x^3 + 44x^2 - 48x\\ \end{split}\]
\[ \frac{dy}{dx} = 4 x^3 - 36 x^2 + 88x - 48 \]
import sympy as sp
x = sp.symbols("x")
y = x * (x - 2) * (x - 4) * (x - 6)
sp.expand(y)
\[\displaystyle x^{4} - 12 x^{3} + 44 x^{2} - 48 x\]
sp.expand(y).diff(x)
\[\displaystyle 4 x^{3} - 36 x^{2} + 88 x - 48\]

\(\text { (3) } y=\frac{5+x}{5-x}\)

\[ y=\frac{5+x}{5-x} = \frac{g(x)}{m(x)} \]

とおく。商の微分公式から

\[\begin{split} \begin{align} \frac{dy}{dx} &= \frac{g'(x) m(x) - g(x) m'(x)}{m(x)^2}\\ &= \frac{(5+x)' (5-x) - (5+x) (5-x)'}{(5-x)^2}\\ &= \frac{(5-x) + (5+x)}{(5-x)^2}\\ &= \frac{10}{(5-x)^2}\\ \end{align} \end{split}\]

\(\text { (4) } y=\frac{1}{\sqrt{x^2+2}}\)

\[ y = (x^2+2)^{-1/2} \]
\[\begin{split} \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = - \frac{1}{2} (x^2 + 2)^{-3/2} \times 2x\\ = - \frac{ x }{x^2 + 2^{3/2}} \end{split}\]
import sympy as sp
x = sp.symbols("x")
y = 1/sp.sqrt(x**2 + 2)
y.diff(x)
\[\displaystyle - \frac{x}{\left(x^{2} + 2\right)^{\frac{3}{2}}}\]

\(\displaystyle \text { (5) } y=\frac{\cos x}{x}\)

商の公式を使う場合

\[\begin{split} \left(\frac{\cos x}{x}\right)' = \frac{-\sin x \cdot x - \cos x}{x^2}\\ = \frac{-x \sin x + \cos x}{x^2}\\ \end{split}\]

積の微分公式を使う

\[\begin{split} [\cos x \cdot x^{-1}]' = -\sin x \cdot x^{-1} + \cos x \cdot -x^{-2}\\ = \frac{- \sin x}{x} + \frac{\cos x}{x^2}\\ = \frac{- x \sin x + \cos x}{x^2}\\ \end{split}\]

\(\text { (6) } y=e^{a x}(\cos b x+\sin b x)\)

積の公式を使って

\[\begin{split} \begin{align} [e^{a x}\cdot (\cos b x + \sin b x)]' &= a e^{a x} \cdot (\cos b x + \sin b x) + e^{a x} \cdot (-b \sin bx + b \cos b x)\\ &= e^{a x} \cdot (a \cos b x + a \sin b x) + e^{a x} \cdot (-b \sin bx + b \cos b x)\\ &= e^{a x} [(a \cos b x) + (a \sin b x) -b \sin bx) + (b \cos b x)]\\ &= e^{a x} [(a +b )\cos b x + (a - b) \sin b x]\\ \end{align} \end{split}\]
前提1:\((e^{ax})' = a e^{ax}\)

\(u=ax\)とおいて合成関数として

\[ \frac{ d e^{u} }{ d u } \frac{ d ax }{ dx } = e^{ax} a \]
前提2:\((\sin bx)' = b \cos bx\)

\(u=bx\)とした合成関数として、

\[ \frac{ d \sin u }{ du } \frac{ d u }{ dx } = \cos bx \cdot b \]
import sympy as sp
a, b, x = sp.symbols("a b x")
y = sp.exp(a * x) * (sp.cos(b * x) + sp.sin(b * x))
y.diff(x)
\[\displaystyle a \left(\sin{\left(b x \right)} + \cos{\left(b x \right)}\right) e^{a x} + \left(- b \sin{\left(b x \right)} + b \cos{\left(b x \right)}\right) e^{a x}\]

\(\text { (7) } y=\tan \left(x^2+2\right)\)

\(u=x^2+2\)として

\[\begin{split} [\tan (x^2+2)]' = \frac{dy}{du} \frac{du}{dx}\\ = \frac{1}{\cos^2 u} 2 x\\ = \frac{1}{\cos^2 (x^2+2)} 2 x\\ = \frac{ 2 x}{\cos^2 (x^2+2)}\\ \end{split}\]

\(\text { (8) } y=\log \left(\cos ^2 x\right)\)

\[\begin{split} (\cos^2 x)' = -\sin x \cos x + \cos x \cdot -\sin x\\ = -2 \sin x \cos x \end{split}\]

なので

\[\begin{split} \begin{align} y' &= \frac{d(\log u)}{du} \frac{du}{dx}\\ &= \frac{1}{\cos^2 x} \times -2 \sin x \cos x\\ &= -2 \frac{\sin x}{\cos x}\\ &= -2 \tan x \end{align} \end{split}\]

\(\text { (9) } y=\log \{\log (\log x)\}\)

\[\begin{split} \begin{align} \frac{dy}{dx} &= \frac{d (\log \{\log (\log x)\})}{d \{\log (\log x)\}} \frac{d \{\log (\log x)\}}{d (\log x)} \frac{d (\log x)}{dx}\\ &= \frac{1}{\log (\log x)} \frac{1}{\log x} \frac{1}{x}\\ &= \frac{1}{\log (\log x) \cdot \log x \cdot x} \end{align} \end{split}\]

\(\text { (10) } y=e^{x^2+3 x} \log x\)

まず\(e^{x^2+3 x}\)は合成関数の微分公式で

\[ \frac{d e^{x^2+3 x}}{d(x^2+3 x)} \frac{d (x^2+3 x)}{dx} = e^{x^2+3 x} ( 2x+3) \]

\(e^{x^2+3 x} \log x\)は積の微分公式で

\[\begin{split} \begin{align} \frac{dy}{dx} &= (e^{x^2+3 x})' \log x + e^{x^2+3 x} (\log x)' \\ &= e^{x^2+3 x} ( 2x+3)\log x + e^{x^2+3 x} \frac{1}{x}\\ &= e^{x^2+3 x} \left( (2x+3)\log x + \frac{1}{x} \right)\\ \end{align} \end{split}\]

\(\text { (11) } y=8^x x^3\)

積の微分公式より

\[ (8^x)' x^3 + 8^x (x^3)' \]

\((8^x)'\)は対数をとって逆関数の微分として解くと\((a^x)' = x \log a\)となることから

\[ (8^x)' = 8^x \log 8 \]

よって

\[\begin{split} (8^x)' x^3 + 8^x (x^3)' = 8^x \log 8 \cdot x^3 + 8^x 3x^2\\ = 8^x (x^3 \log 8 + 3x^2)\\ \end{split}\]

\(\displaystyle (12)\ y=\frac{x}{\sqrt{a^2-x^2}}-\arcsin \frac{x}{a}\)

まず第1項は

\[\begin{split} \begin{align} \left( \frac{x}{\sqrt{a^2-x^2}} \right)' &= \frac{\sqrt{a^2-x^2} - x \frac{1}{2} (a^2-x^2)^{-1/2} \cdot (-2x) }{(\sqrt{a^2-x^2})^2}\\ &= \frac{\sqrt{a^2-x^2}}{(\sqrt{a^2-x^2})^2} + \frac{x^2 (a^2-x^2)^{-1/2}}{(\sqrt{a^2-x^2})^2}\\ &= \frac{1}{\sqrt{a^2-x^2}} + \frac{x^2}{(a^2-x^2)^{\frac{3}{2}}}\\ \end{align} \end{split}\]

つづいて第2項は

\[ \frac{d}{d x} \arcsin x = \frac{1}{\sqrt{1 - x^2}} \]

より

\[\begin{split} \begin{align} \frac{d}{d x} \arcsin \frac{x}{a} &= \frac{d \arcsin u}{d u} \frac{d (1/a) x}{d x}\\ &= \frac{1}{\sqrt{1 - (\frac{x}{a})^2}} \cdot \frac{1}{a}\\ &= \frac{1}{a \sqrt{1 - \frac{x^2}{a^2}}}\\ &= \frac{1}{\sqrt{a^2(1 - \frac{x^2}{a^2})}}\\ &= \frac{1}{\sqrt{a^2 - x^2}}\\ \end{align} \end{split}\]

よって

\[ \left( \frac{x}{\sqrt{a^2-x^2}}-\arcsin \frac{x}{a}\right)' = \frac{1}{\sqrt{a^2-x^2}} + \frac{x^2}{(a^2-x^2)^{\frac{3}{2}}} - \frac{1}{\sqrt{a^2 - x^2}} \]

整理すると

\[\begin{split} \frac{1}{\sqrt{a^2-x^2}} + \frac{x^2}{(a^2-x^2)^{\frac{3}{2}}} - \frac{1}{\sqrt{a^2 - x^2}} \\ = \frac{ (a^2-x^2) }{ \sqrt{a^2-x^2} (a^2-x^2)} + \frac{x^2}{\sqrt{a^2-x^2} (a^2-x^2)} - \frac{ (a^2-x^2)}{\sqrt{a^2 - x^2} (a^2-x^2)} \\ = \frac{ (a^2-x^2) + x^2 - (a^2-x^2) }{ \sqrt{a^2-x^2} (a^2-x^2)}\\ = \frac{x^2}{ \sqrt{a^2-x^2} (a^2-x^2)}\\ = \frac{x^2}{(a^2-x^2)^{\frac{3}{2}}} \end{split}\]

(13) \(\displaystyle y=\arctan \left(\frac{b}{a} \tan x\right)\)

\[\begin{split} (\arctan(x))' = \frac{1}{x^2 + 1}\\ (\tan(x))' = \frac{1}{\cos^2 x}\\ \end{split}\]

より、

\[\begin{split} \left[ \arctan \left(\frac{b}{a} \tan x\right)\right]' = \frac{1}{\frac{b^2}{a^2} \tan^2 x + 1} \cdot \frac{b}{a} \frac{1}{\cos^2 x}\\ = \frac{1}{\frac{b^2}{a^2} \frac{\sin^2 x}{\cos^2 x} + 1} \cdot \frac{b}{a \cos^2 x}\\ = \frac{1}{\frac{b^2}{a^2} \frac{\sin^2 x}{\cos^2 x} + 1} \cdot \frac{ab}{a^2 \cos^2 x}\\ = \frac{ab}{(\frac{b^2}{a^2} \frac{\sin^2 x}{\cos^2 x} + 1) a^2 \cos^2 x}\\ = \frac{ab}{ b^2 \sin^2 x + a^2 \cos^2 x }\\ \end{split}\]