確率分布の性質

Contents

確率分布の性質#

再生性#

確率変数の和が同じ確率分布になることを再生性という。

例えば、\(N(\mu_1, \sigma_1^2)\)の正規分布に従う確率変数と\(N(\mu_2, \sigma_2^2)\)の正規分布に従う確率変数の和は、\(N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)\)の正規分布に従う。

Note

「再生性を持っていたとしても(例えば正規分布でも)、2つの分布を足したら2つの峰の分布になるのではないか?」と思われるかもしれない。

例えば、1つ目の分布から得た\(n\)個のサンプル\((x_1, x_2, \dots, x_n)\)があり、もう1つの分布からも同様に\(n\)個のサンプル\((y_1, y_2, \dots, y_n)\)が得られているとする。

仮にサンプルを連結するように足す、すなわち

\[ (x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) \]

という\(2n\)個のサンプルを作る場合、これは2つの峰の分布となる。

しかし、再生性で議論しているのは

\[\begin{split} \begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{pmatrix} + \begin{pmatrix} y_1\\ y_2\\ \vdots\\ y_n \end{pmatrix} \end{split}\]

という演算である

Hide code cell source
import matplotlib.pyplot as plt
import japanize_matplotlib
from scipy.stats import norm

x = norm.rvs(loc=10, scale=2, size=100, random_state=0)
y = norm.rvs(loc=25, scale=5, size=100, random_state=0)

def info(x):
    return f"mean={x.mean():.1f}, std={x.std():.1f}, n={len(x)}"
    

fig, axes = plt.subplots(nrows=3)
fig.subplots_adjust(hspace=0.6)
axes[0].hist(x, label=f"x: {info(x)}", alpha=.5)
axes[0].hist(y, label=f"y: {info(y)}", alpha=.5)
axes[0].set(title=r"Raw data: $x \sim N(\mu=10, \sigma=2), y \sim N(\mu=25, \sigma=5)$")
axes[0].legend()


# もしレコードを結合するなら、2峰の分布になる
import numpy as np
a = np.append(x, y)
axes[1].hist(a, label=f"a: {info(a)}", alpha=.5)
axes[1].legend()
axes[1].set(title=f"Distribution of $a = [x, y]$ (concatenated samples)")


# レコードを結合するのではなく、サンプルごとに和をとっている点に注意
z = x + y
axes[2].hist(z, label=f"z: {info(z)}", alpha=.5)
axes[2].legend()
axes[2].set(title=f"Distribution of $z = x + y$")

fig.show()
../../_images/bfc46821160ecae1602564b0fa96010147e8d9414f83e9889d546473e36e9355.png