3.3
4次の正方行列 \(I, J, K\)を
$\(
I=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right), J=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), K=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
\)\(
により定める。 \)I, J, K\( を 2 次の正方行列を用いて分割することにより、積 \)I^2, J^2\(, \)K^2, I J, J I, J K, K J, K I, I K$ を計算せよ。
\[\begin{split}
A =
\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}
,\hspace{1em}
B =
\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}
,\hspace{1em}
C =
\begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix}
\end{split}\]
とおくと
\[\begin{split}
I=
\begin{pmatrix}
A & O\\
O & A
\end{pmatrix}, \
J=
\begin{pmatrix}
O & B\\
-B & O
\end{pmatrix}, \
K=
\begin{pmatrix}
O & -C\\
C & O
\end{pmatrix}
\end{split}\]
\[\begin{split}
I^2 =
\begin{pmatrix}
A & O\\
O & A
\end{pmatrix}
\begin{pmatrix}
A & O\\
O & A
\end{pmatrix}
=
\begin{pmatrix}
A^2 & O\\
O & A^2
\end{pmatrix}
\end{split}\]
\[\begin{split}
A^2 =
\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}
= - E_{2}
\end{split}\]
なので
\[\begin{split}
I^2 =
\begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}
\end{split}\]
\[\begin{split}
J^2 =
\begin{pmatrix}
O & B\\
-B & O
\end{pmatrix}
\begin{pmatrix}
O & B\\
-B & O
\end{pmatrix}
=
\begin{pmatrix}
B (-B) & O\\
O & -B B
\end{pmatrix}
=
\begin{pmatrix}
-1 \cdot B^2 & O\\
O & -1 \cdot B^2
\end{pmatrix}
\end{split}\]
\[\begin{split}
B^2 =
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
= E_2
\end{split}\]
\[\begin{split}
J^2 =
\begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}
\end{split}\]
\[\begin{split}
K^2 =
\begin{pmatrix}
O & -C\\
C & O
\end{pmatrix}
\begin{pmatrix}
O & -C\\
C & O
\end{pmatrix}
=
\begin{pmatrix}
-1\cdot C^2 & O\\
O & -1\cdot C^2
\end{pmatrix}
\end{split}\]
\[\begin{split}
C^2 =
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
= E_2
\end{split}\]
\[\begin{split}
K^2 =
\begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}
\end{split}\]
\[\begin{split}
IJ
= \begin{pmatrix}
I_s & O\\
O & I_s
\end{pmatrix}
\begin{pmatrix}
O & J_1 \\
J_2 & O
\end{pmatrix}
= \begin{pmatrix}
O & I_s J_1 \\
I_s J_2 & O
\end{pmatrix}
\end{split}\]
\[\begin{split}
I_s J_1 =
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
=
\begin{pmatrix}
0 & -1 \\
-1 & 0
\end{pmatrix}
\end{split}\]
\[\begin{split}
I_s J_2 =
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
=
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\end{split}\]
\[\begin{split}
IJ = \begin{pmatrix}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
\end{split}\]
\[\begin{split}
JI
=
\begin{pmatrix}
O & J_1 \\
J_2 & O
\end{pmatrix}
\begin{pmatrix}
I_s & O\\
O & I_s
\end{pmatrix}
= \begin{pmatrix}
O & J_1 I_s\\
J_2 I_s & O
\end{pmatrix}
\end{split}\]
\[\begin{split}
J_1 I_s =
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\end{split}\]
\[\begin{split}
J_2 I_s =
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
0 & -1 \\
-1 & 0
\end{pmatrix}
\end{split}\]
\[\begin{split}
JI =
\begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{pmatrix}
\end{split}\]
\[\begin{split}
J K =
\begin{pmatrix}
O & J_1 \\
J_2 & O
\end{pmatrix}
\begin{pmatrix}
O & K_1\\
K_2 & O
\end{pmatrix}
=
\begin{pmatrix}
J_1 K_2 & O\\
O & J_2 K_1
\end{pmatrix}
\end{split}\]
\[\begin{split}
J_1 K_2 =
\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}
\end{split}\]
\[\begin{split}
J_2 K_1 =
\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}
\begin{pmatrix}
0 & -1\\
-1 & 0
\end{pmatrix}
=
\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}
\end{split}\]
\[\begin{split}
JK =
\begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\end{split}\]
\[\begin{split}
K J =
\begin{pmatrix}
O & K_1\\
K_2 & O
\end{pmatrix}
\begin{pmatrix}
O & J_1 \\
J_2 & O
\end{pmatrix}
=
\begin{pmatrix}
K_1 J_2 & O\\
O & K_2 J_1
\end{pmatrix}
\end{split}\]
\[\begin{split}
K_2 J_1 =
\begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix}
\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}
=
\begin{pmatrix}
0 & 1\\
-1 & 0\\
\end{pmatrix}
\end{split}\]
\[\begin{split}
K_1 J_2 =
\begin{pmatrix}
0 & -1\\
-1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}
=
\begin{pmatrix}
0 & 1\\
-1 & 0
\end{pmatrix}
\end{split}\]
\[\begin{split}
KJ =
\begin{pmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{pmatrix}
\end{split}\]
\[\begin{split}
K I =
\begin{pmatrix}
O & K_1\\
K_2 & O
\end{pmatrix}
\begin{pmatrix}
I_s & O \\
O & I_s
\end{pmatrix}
=
\begin{pmatrix}
O & K_1 I_s\\
K_2 I_s & O
\end{pmatrix}
\end{split}\]
\[\begin{split}
K_1 I_s =
\begin{pmatrix}
0 & -1\\
-1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}
\end{split}\]
\[\begin{split}
K_2 I_s =
\begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0\\
0 & -1\\
\end{pmatrix}
\end{split}\]
\[\begin{split}
KI =
\begin{pmatrix}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{pmatrix}
\end{split}\]
\[\begin{split}
I K =
\begin{pmatrix}
I_s & O \\
O & I_s
\end{pmatrix}
\begin{pmatrix}
O & K_1\\
K_2 & O
\end{pmatrix}
=
\begin{pmatrix}
O & I_s K_1\\
I_s K_2 & O
\end{pmatrix}
\end{split}\]
\[\begin{split}
I_s K_1 =
\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & -1\\
-1 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\end{split}\]
\[\begin{split}
I_s K_2 =
\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix}
\end{split}\]
\[\begin{split}
IK =
\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
\end{split}\]