練習問題 メモ 3

Contents

練習問題 メモ 3#

3.1#

\(A\)\(k \times l\) 行列、 \(B\)\(k \times n\) 行列、 \(C\)\(m \times n\) 行列とする。分割された \((k+m) \times(l+n)\)行列に対する次の計算をせよ。 \( \left(\begin{array}{cc} A & B \\ O_{m, l} & C \end{array}\right)+\left(\begin{array}{cc} A & -B \\ O_{m, l} & -2 C \end{array}\right) \)

\[\begin{split} \left(\begin{array}{cc} A & B \\ O_{m, l} & C \end{array}\right) + \left(\begin{array}{cc} A & -B \\ O_{m, l} & -2 C \end{array}\right) = \left(\begin{array}{cc} A+A & B-B \\ O_{m, l}-O_{m, l} & C-2 C \end{array}\right) = \left(\begin{array}{cc} 2A & O_{k,n} \\ O_{m, l} & -C \end{array}\right) \end{split}\]

3.2#

\(A\)\(m \times n\) 行列とする。分割された \((m+n)\) 次の正方行列 \(\left(\begin{array}{cc}E_m & A \\ O_{n, m} & E_n\end{array}\right)\)の3乗を計算せよ。

\[\begin{split} \left(\begin{array}{cc}E_m & A \\ O_{n, m} & E_n\end{array}\right)^3 = \left(\begin{array}{cc} E_m^3 & 3A \\ O_{n, m} & E_n^3 \end{array}\right) = \left(\begin{array}{cc} E_m & 3A \\ O_{n, m} & E_n \end{array}\right) \end{split}\]
\[\begin{split} \underbrace{ \begin{pmatrix} E_m & A \\ O_{n, m} & E_n \end{pmatrix} \begin{pmatrix} E_m & A \\ O_{n, m} & E_n \end{pmatrix} }_{ \begin{pmatrix} E_m & 2A \\ O_{n, m} & E_n \end{pmatrix} } \begin{pmatrix} E_m & A \\ O_{n, m} & E_n \end{pmatrix} = \begin{pmatrix} E_m & 3A \\ O_{n, m} & E_n \end{pmatrix} \end{split}\]

3.3#

4次の正方行列 \(I, J, K\)を $\( I=\left(\begin{array}{cccc} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{array}\right), J=\left(\begin{array}{cccc} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{array}\right), K=\left(\begin{array}{cccc} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right) \)\( により定める。 \)I, J, K\( を 2 次の正方行列を用いて分割することにより、積 \)I^2, J^2\(, \)K^2, I J, J I, J K, K J, K I, I K$ を計算せよ。

\[\begin{split} A = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} ,\hspace{1em} B = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} ,\hspace{1em} C = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \end{split}\]

とおくと

\[\begin{split} I= \begin{pmatrix} A & O\\ O & A \end{pmatrix}, \ J= \begin{pmatrix} O & B\\ -B & O \end{pmatrix}, \ K= \begin{pmatrix} O & -C\\ C & O \end{pmatrix} \end{split}\]

\(I^2\)

\[\begin{split} I^2 = \begin{pmatrix} A & O\\ O & A \end{pmatrix} \begin{pmatrix} A & O\\ O & A \end{pmatrix} = \begin{pmatrix} A^2 & O\\ O & A^2 \end{pmatrix} \end{split}\]
\[\begin{split} A^2 = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} = - E_{2} \end{split}\]

なので

\[\begin{split} I^2 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \end{split}\]
Hide code cell source
import numpy as np
I = np.array([
    [0, -1, 0, 0],
    [1, 0, 0, 0],
    [0, 0, 0, -1],
    [0, 0, 1, 0]
])

I @ I
Hide code cell output
array([[-1,  0,  0,  0],
       [ 0, -1,  0,  0],
       [ 0,  0, -1,  0],
       [ 0,  0,  0, -1]])

\(J^2\)

\[\begin{split} J^2 = \begin{pmatrix} O & B\\ -B & O \end{pmatrix} \begin{pmatrix} O & B\\ -B & O \end{pmatrix} = \begin{pmatrix} B (-B) & O\\ O & -B B \end{pmatrix} = \begin{pmatrix} -1 \cdot B^2 & O\\ O & -1 \cdot B^2 \end{pmatrix} \end{split}\]
\[\begin{split} B^2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E_2 \end{split}\]
\[\begin{split} J^2 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \end{split}\]
Hide code cell source
import numpy as np
J = np.array([
    [0, 0, -1, 0],
    [0, 0, 0, 1],
    [1, 0, 0, 0],
    [0, -1, 0, 0]
])

J @ J
Hide code cell output
array([[-1,  0,  0,  0],
       [ 0, -1,  0,  0],
       [ 0,  0, -1,  0],
       [ 0,  0,  0, -1]])

\(K^2\)

\[\begin{split} K^2 = \begin{pmatrix} O & -C\\ C & O \end{pmatrix} \begin{pmatrix} O & -C\\ C & O \end{pmatrix} = \begin{pmatrix} -1\cdot C^2 & O\\ O & -1\cdot C^2 \end{pmatrix} \end{split}\]
\[\begin{split} C^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E_2 \end{split}\]
\[\begin{split} K^2 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \end{split}\]
Hide code cell source
import numpy as np
K = np.array([
    [0, 0, 0, -1],
    [0, 0, -1, 0],
    [0, 1, 0, 0],
    [1, 0, 0, 0]
])

K @ K
Hide code cell output
array([[-1,  0,  0,  0],
       [ 0, -1,  0,  0],
       [ 0,  0, -1,  0],
       [ 0,  0,  0, -1]])

\(IJ\)

\[\begin{split} IJ = \begin{pmatrix} I_s & O\\ O & I_s \end{pmatrix} \begin{pmatrix} O & J_1 \\ J_2 & O \end{pmatrix} = \begin{pmatrix} O & I_s J_1 \\ I_s J_2 & O \end{pmatrix} \end{split}\]
\[\begin{split} I_s J_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \end{split}\]
\[\begin{split} I_s J_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{split}\]
\[\begin{split} IJ = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \end{split}\]
Hide code cell source
I @ J
Hide code cell output
array([[ 0,  0,  0, -1],
       [ 0,  0, -1,  0],
       [ 0,  1,  0,  0],
       [ 1,  0,  0,  0]])

\(J I\)

\[\begin{split} JI = \begin{pmatrix} O & J_1 \\ J_2 & O \end{pmatrix} \begin{pmatrix} I_s & O\\ O & I_s \end{pmatrix} = \begin{pmatrix} O & J_1 I_s\\ J_2 I_s & O \end{pmatrix} \end{split}\]
\[\begin{split} J_1 I_s = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{split}\]
\[\begin{split} J_2 I_s = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \end{split}\]
\[\begin{split} JI = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \end{split}\]
Hide code cell source
J @ I
Hide code cell output
array([[ 0,  0,  0,  1],
       [ 0,  0,  1,  0],
       [ 0, -1,  0,  0],
       [-1,  0,  0,  0]])

\(J K\)

\[\begin{split} J K = \begin{pmatrix} O & J_1 \\ J_2 & O \end{pmatrix} \begin{pmatrix} O & K_1\\ K_2 & O \end{pmatrix} = \begin{pmatrix} J_1 K_2 & O\\ O & J_2 K_1 \end{pmatrix} \end{split}\]
\[\begin{split} J_1 K_2 = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \end{split}\]
\[\begin{split} J_2 K_1 = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1\\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \end{split}\]
\[\begin{split} JK = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \end{split}\]
Hide code cell source
J @ K
Hide code cell output
array([[ 0, -1,  0,  0],
       [ 1,  0,  0,  0],
       [ 0,  0,  0, -1],
       [ 0,  0,  1,  0]])

\(K J\)

\[\begin{split} K J = \begin{pmatrix} O & K_1\\ K_2 & O \end{pmatrix} \begin{pmatrix} O & J_1 \\ J_2 & O \end{pmatrix} = \begin{pmatrix} K_1 J_2 & O\\ O & K_2 J_1 \end{pmatrix} \end{split}\]
\[\begin{split} K_2 J_1 = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1\\ -1 & 0\\ \end{pmatrix} \end{split}\]
\[\begin{split} K_1 J_2 = \begin{pmatrix} 0 & -1\\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \end{split}\]
\[\begin{split} KJ = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \end{split}\]
Hide code cell source
K @ J
Hide code cell output
array([[ 0,  1,  0,  0],
       [-1,  0,  0,  0],
       [ 0,  0,  0,  1],
       [ 0,  0, -1,  0]])

\(K I\)

\[\begin{split} K I = \begin{pmatrix} O & K_1\\ K_2 & O \end{pmatrix} \begin{pmatrix} I_s & O \\ O & I_s \end{pmatrix} = \begin{pmatrix} O & K_1 I_s\\ K_2 I_s & O \end{pmatrix} \end{split}\]
\[\begin{split} K_1 I_s = \begin{pmatrix} 0 & -1\\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} \end{split}\]
\[\begin{split} K_2 I_s = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & -1\\ \end{pmatrix} \end{split}\]
\[\begin{split} KI = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \end{split}\]
Hide code cell source
K @ I
Hide code cell output
array([[ 0,  0, -1,  0],
       [ 0,  0,  0,  1],
       [ 1,  0,  0,  0],
       [ 0, -1,  0,  0]])

\(I K\)

\[\begin{split} I K = \begin{pmatrix} I_s & O \\ O & I_s \end{pmatrix} \begin{pmatrix} O & K_1\\ K_2 & O \end{pmatrix} = \begin{pmatrix} O & I_s K_1\\ I_s K_2 & O \end{pmatrix} \end{split}\]
\[\begin{split} I_s K_1 = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1\\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{split}\]
\[\begin{split} I_s K_2 = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} \end{split}\]
\[\begin{split} IK = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \end{split}\]
Hide code cell source
I @ K
Hide code cell output
array([[ 0,  0,  1,  0],
       [ 0,  0,  0, -1],
       [-1,  0,  0,  0],
       [ 0,  1,  0,  0]])

3.4#

\(A_{12}, A_{13}, A_{22}, A_{23}, A_{33}, B_{11}, B_{12}, B_{13}, B_{23}, B_{33}, C_{11}, C_{12}, C_{13}, C_{22}, C_{23}\)\(n\)次の正方行列、\(O\)\(n\)次の零行列とする。次の計算をせよ。 \( \left(\begin{array}{ccc} O & A_{12} & A_{13} \\ O & A_{22} & A_{23} \\ O & O & A_{33} \end{array}\right)\left(\begin{array}{ccc} B_{11} & B_{12} & B_{13} \\ O & O & B_{23} \\ O & O & B_{33} \end{array}\right)\left(\begin{array}{ccc} C_{11} & C_{12} & C_{13} \\ O & C_{22} & C_{23} \\ O & O & O \end{array}\right) \)

\[\begin{split} \begin{pmatrix} O & A_{12} & A_{13} \\ O & A_{22} & A_{23} \\ O & O & A_{33} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & B_{13} \\ O & O & B_{23} \\ O & O & B_{33} \end{pmatrix} = \begin{pmatrix} O & O & A_{12} B_{23} + A_{13} B_{33}\\ O & O & A_{22} B_{23} + A_{23} B_{33}\\ O & O & A_{33} B_{33} \end{pmatrix} \end{split}\]
\[\begin{split} \begin{pmatrix} O & O & A_{12} B_{23} + A_{13} B_{33}\\ O & O & A_{22} B_{23} + A_{23} B_{33}\\ O & O & A_{33} B_{33} \end{pmatrix} \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ O & C_{22} & C_{23} \\ O & O & O \end{pmatrix} = \begin{pmatrix} O & O & O\\ O & O & O\\ O & O & O \end{pmatrix} = O \end{split}\]
Hide code cell source
# 検算
from sympy import symbols, Matrix
A_12, A_13, A_22, A_23, A_33 = symbols("A_12, A_13, A_22, A_23, A_33")
B_11, B_12, B_13, B_23, B_33 = symbols("B_11, B_12, B_13, B_23, B_33")
C_11, C_12, C_13, C_22, C_23 = symbols("C_11, C_12, C_13, C_22, C_23")

A = Matrix([
    [0, A_12, A_13],
    [0, A_22, A_23],
    [0, 0, A_33]
])


B = Matrix([
    [B_11, B_12, B_13],
    [0, 0, B_23],
    [0, 0, B_33]
])

C = Matrix([
    [C_11, C_12, C_13],
    [0, C_22, C_23],
    [0, 0, 0]
])
Hide code cell source
A @ B
Hide code cell output
\[\begin{split}\displaystyle \left[\begin{matrix}0 & 0 & A_{12} B_{23} + A_{13} B_{33}\\0 & 0 & A_{22} B_{23} + A_{23} B_{33}\\0 & 0 & A_{33} B_{33}\end{matrix}\right]\end{split}\]
Hide code cell source
A @ B @ C
Hide code cell output
\[\begin{split}\displaystyle \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right]\end{split}\]

3.5#

\(a, b\) を異なる数、 \(X_{11}, X_{12}, X_{21}, X_{22}\) をそれぞれ \(m\) 次の正方行列、 \(m \times n\) 行列、 \(n \times m\) 行列、 \(n\) 次の正方行列とし、 \((m+n)\) 次の正方行列 \(A\) および \(X\)

\[\begin{split} A=\left(\begin{array}{cc} a E_m & O_{m, n} \\ O_{n, m} & b E_n \end{array}\right), X=\left(\begin{array}{ll} X_{11} & X_{12} \\ X_{21} & X_{22} \end{array}\right) \end{split}\]

により定める。 \(A\)\(X\) が可換となるのは \(X_{12}\) および \(X_{21}\) が零行列のときであることを示せ。

\[\begin{split} AX = \begin{pmatrix} a E_m & O_{m, n} \\ O_{n, m} & b E_n \end{pmatrix} \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} = \begin{pmatrix} a E_m X_{11} & a E_m X_{12} \\ b E_n X_{21} & b E_n X_{22} \end{pmatrix} = \begin{pmatrix} a X_{11} & a X_{12} \\ b X_{21} & b X_{22} \end{pmatrix} \end{split}\]
\[\begin{split} XA= \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \begin{pmatrix} a E_m & O_{m, n} \\ O_{n, m} & b E_n \end{pmatrix} = \begin{pmatrix} a X_{11} E_m & b X_{12} E_n\\ a X_{21} E_m & b X_{22} E_n \end{pmatrix} = \begin{pmatrix} a X_{11} & b X_{12}\\ a X_{21} & b X_{22} \end{pmatrix} \end{split}\]

となり、\(a, b\)が異なる数であるため、\(AX\)\(XA\)の対角成分は異なる値になっている。

\(X_{12}\)および\(X_{21}\)が零行列であれば対角成分は零行列になるため、\(AX = XA\)となる