汎化誤差#
様々な誤差の指標#
汎化誤差#
訓練データ
は**真の誤差(true error)あるいは汎化誤差(generatization error)**あるいはextra-sample errorと呼ばれる
期待誤差#
訓練セットで汎化誤差の期待値をとった
を**期待誤差(expected error)**という。
期待誤差のほうが統計的に扱いやすい
訓練誤差#
訓練データで誤差の平均値をとったもの
を**訓練誤差(training error)あるいは再代入誤り率(resubstitution error)**という。
訓練誤差は汎化誤差以下になることが知られている
はじパタによれば、再代入誤り率
の関係性があるとされる(ここで
Conditional Error
汎化誤差の推定#
Hold out
Cross Validation
汎化誤差上界#
Chernoff bound#
PAC-Bayesian bound#
Catoni bound
訓練誤差ベース#
訓練誤差ベースの汎化誤差上界は実験してみると100%近くの意味のない値になることも多い[2012.04115] Generalization bounds for deep learning
テスト誤差ベース#
テスト用データを使って汎化誤差上界を計算したもの
ノイズ付加#
ノイズ耐性と汎化性能は相関する
そこでノイズ付加汎化誤差上界を計算するアプローチがある