練習問題メモ 03

Contents

練習問題メモ 03#

和達三樹. (2019). 微分積分. 第5章 練習問題

[1]#

[1] 次の関数は原点 \((0,0)\) を除いて連続である. 原点でも連続にできるか? 直線 \(y\) \(=m x\) に沿って原点に近づくとして調べよ.

\[ \text { (1) } \quad z=\frac{e^{x^2+y^2}-1}{x^2+y^2} \]
\[ z=\frac{e^{x^2+m^2x^2}-1}{x^2+m^2x^2} =\frac{e^{(1+m^2)x^2}-1}{(1+m^2)x^2} \]

指数関数のテイラー展開

\[ exp(ax) = 1 + ax + \frac{(ax)^2}{2!} + \frac{(ax)^3}{3!} + \cdots \]

により、\(x\)が小さい時

\[ e^{a x^2} = 1 + a x^2 \]

となるため

\[ z = \frac{e^{(1+m^2)x^2}-1}{(1+m^2)x^2} = \frac{1 + (1+m^2) x^2 - 1}{(1+m^2)x^2} = \frac{(1+m^2) x^2}{(1+m^2)x^2} = 1 \]

となり、\(m\)の値の取り方(0への近づき方)によらず1に収束する

よって連続にできる

\[\begin{split} z = \begin{cases} \frac{e^{x^2+y^2}-1}{x^2+y^2} & ((x,y) \neq (0,0)のとき)\\ 1 & ((x,y) = (0,0)のとき)\\ \end{cases} \end{split}\]
Hide code cell source
import numpy as np
import matplotlib.pyplot as plt

a = 1
x = np.linspace(-1, 1, 100)
plt.plot(x, np.exp(a * x**2))
plt.xlabel("x")
plt.ylabel(f"$\exp(a x^2), a=1$")
plt.title(f"$\exp(a x^2), a=1$")
plt.show()
../../../_images/732d24eba03a10a6aace4b2e08d41b958e0172df3144517efb85adb04fb93b38.png
\[ \text { (2) } \quad z=\frac{x^2 y^2}{x^4+y^4} \]
\[ \lim_{x\to 0} z = \lim_{x\to 0} \frac{x^4 m^2}{x^4 + m^4 x^4} = \lim_{x\to 0} \frac{m^2}{1 + m^4} = \frac{m^2}{1 + m^4} \]

\(m\)の値によって異なる値をとるため、原点への近づけ方によって異なる値になってしまう。よって極限は存在せず、連続にできない。

[2]#

[2] 次の関数 \(f(x, y)\)\(f_x, f_y, f_{x x}, f_{y y}, f_{x y}, f_{y x}\) を計算せよ.

(1) \(f(x, y)=x^3-x^2 y+x y^2-y^3+1\)

(2) \(f(x, y)=x^2 \cos y-y^2 \cos x\)

(3) \(f(x, y)=\arctan x^2 y\)

(1) \(f(x, y)=x^3-x^2 y+x y^2-y^3+1\)

\[\begin{split} f_x = 3x^2 - 2xy + y^2\\ f_y = 3y^2 + 2xy - x^2\\ f_{xx} = 6x - 2y\\ f_{yy} = 6y + 2x\\ f_{xy} = - 2x + 2y\\ f_{yx} = - 2x + 2y\\ \end{split}\]

(2) \(f(x, y)=x^2 \cos y-y^2 \cos x\)

\[\begin{split} f_x = 2x \cos y + y^2 \sin x\\ f_y = - x^2 \sin y - 2y \cos x\\ f_{xx} = 2 \cos y + y^2 \cos x\\ f_{yy} = - x^2 \cos y - 2 \cos x\\ f_{xy} = - 2x \sin y + 2y \sin x\\ f_{yx} = - 2x \sin y + 2y \sin x\\ \end{split}\]

(3) \(f(x, y)=\arctan x^2 y\)

\((\arctan x)' = 1/(1+x^2)\)なので

\[\begin{split} \begin{align} f_x &= \frac{1}{1+x^4 y^2} 2xy\\ f_y &= \frac{1}{1+x^4 y^2} x^2\\ f_{xx} &= -\frac{(1+x^4 y^2)'}{(1+x^4 y^2)^2} 2xy + \frac{1}{1+x^4 y^2} (2xy)' \quad (積の微分公式と商の微分公式)\\ &= -\frac{4x^3 y^2}{(1+x^4 y^2)^2} 2xy + \frac{1}{1+x^4 y^2} 2y \\ &= -\frac{8x^4 y^3}{(1+x^4 y^2)^2} + \frac{2y}{1+x^4 y^2} \\ &= -\frac{8x^4 y^3}{(1+x^4 y^2)^2} + \frac{2y(1+x^4 y^2)}{(1+x^4 y^2)^2} \\ &= \frac{2y+ 2x^4 y^2 - 8x^4 y^3}{(1+x^4 y^2)^2} \\ &= \frac{2y - 6x^4 y^3}{(1+x^4 y^2)^2} \\ &= \frac{2y(1 - 3x^4 y^2)}{(1+x^4 y^2)^2} \\ f_{yy} &=-\frac{(1+x^4 y^2)'}{(1+x^4 y^2)^2} x^2 + \frac{1}{1+x^4 y^2} (x^2)' \quad (積の微分公式と商の微分公式)\\ &=-\frac{2 x^6 y}{(1+x^4 y^2)^2}\\ f_{xy} &= \frac{(2xy)' (1 + x^4 y^2) - 2xy (1 + x^4 y^2)'}{(1 + x^4 y^2)^2}\\ &= \frac{2x (1 + x^4 y^2) - 4x^5 y^2}{(1 + x^4 y^2)^2}\\ &= \frac{2x + 2x^5 y^2 - 4x^5 y^2}{(1 + x^4 y^2)^2}\\ &= \frac{2x - 2x^5 y^2}{(1 + x^4 y^2)^2}\\ &= \frac{2x(1 - x^4 y^2)}{(1 + x^4 y^2)^2}\\ \\ f_{yx} &= \frac{(x^2)' (1 + x^4 y^2) - x^2 (1 + x^4 y^2)'}{(1 + x^4 y^2)^2}\\ &= \frac{2x (1 + x^4 y^2) - x^2 \times 4x^3 y^2}{(1 + x^4 y^2)^2}\\ &= \frac{2x + 2x^5 y^2 - 4x^5 y^2}{(1 + x^4 y^2)^2}\\ &= \frac{2x - 2x^5 y^2}{(1 + x^4 y^2)^2}\\ &= \frac{2x(1 - x^4 y^2)}{(1 + x^4 y^2)^2}\\ \end{align} \end{split}\]
import sympy as sp
x, y = sp.symbols('x y')
f = sp.atan(x**2 * y)

df = sp.diff(f, x)
sp.diff(df, x)
\[\displaystyle - \frac{8 x^{4} y^{3}}{\left(x^{4} y^{2} + 1\right)^{2}} + \frac{2 y}{x^{4} y^{2} + 1}\]
import sympy as sp
x, y = sp.symbols('x y')
f = sp.atan(x**2 * y)

df = sp.diff(f, x)
sp.diff(df, x)
\[\displaystyle - \frac{8 x^{4} y^{3}}{\left(x^{4} y^{2} + 1\right)^{2}} + \frac{2 y}{x^{4} y^{2} + 1}\]

[3]#

[3] 次の関数の偏導関数 \(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\) を求めよ.

(1) \(z=x^2+4 x y+y^3\)

(2) \(z=\frac{x}{y^2}-\frac{y}{x^2}\)

(3) \(z=\sin (2 x+1) \cos \left(y^2+4\right)\)

(4) \(3 x^2+4 y^2-5 z^2=20\)

(5) \(\sin x y+\sin y z+\sin x z=1\)

(1) \(z=x^2+4 x y+y^3\)

\[\begin{split} \frac{\partial z}{\partial x} = 2x + 4y \\ \frac{\partial z}{\partial y} = 3y^2 + 4x \end{split}\]

(2) \(z=\frac{x}{y^2}-\frac{y}{x^2}\)

\[\begin{split} \begin{align} \frac{\partial z}{\partial x} &= \frac{1}{y^2} (x') - y \left(\frac{1}{x^2} \right)'\\ &= \frac{1}{y^2} (x') + y \frac{(x^2)'}{(x^2)^2} \quad (商の微分公式)\\ &= \frac{1}{y^2} + \frac{2y}{x^3}\\ \frac{\partial z}{\partial y} &= \left(\frac{1}{y^2}\right)' x - \frac{1}{x^2} (y)'\\ &= -\frac{2y}{y^4} x - \frac{1}{x^2}\\ &= -\frac{2x}{y^3} - \frac{1}{x^2}\\ \end{align} \end{split}\]

(3) \(z=\sin (2 x+1) \cos \left(y^2+4\right)\)

\[\begin{split} \begin{align} \frac{\partial z}{\partial x} &= (\sin(2 x+1))' \cos(y^2+4)\\ &= 2 \cos(2x+1) \cos(y^2 + 4)\\ \\ \frac{\partial z}{\partial y} &= \sin(2 x+1) (\cos(y^2+4))'\\ &= -2y \sin(2x+1) \sin(y^2 + 4)\\ \end{align} \end{split}\]
import sympy as sp
x, y = sp.symbols('x y')
f = sp.sin(2*x + 1) * sp.cos(y**2 + 4)
sp.diff(f, y)
\[\displaystyle - 2 y \sin{\left(2 x + 1 \right)} \sin{\left(y^{2} + 4 \right)}\]

(4) \(3 x^2+4 y^2-5 z^2=20\)

\[ F(x,y,z) := 3x^2 + 4y^2 - 5z^2 - 20 = 0 \]

とおく。

\[ \frac{\partial F}{\partial x} = 6x, \quad \frac{\partial F}{\partial y} = 8y, \quad \frac{\partial F}{\partial z} = -10z \]

であり、\(\frac{\partial F}{\partial z} \neq 0\)のため、定理

\[ \frac{\partial z}{\partial x} = -\frac{\partial F/\partial x}{\partial F / \partial z} , \quad \frac{\partial z}{\partial y} = -\frac{\partial F/\partial y}{\partial F / \partial z} \]

より

\[\begin{split} \begin{align} \frac{\partial z}{\partial x} &= \frac{\partial F/\partial x}{\partial F / \partial z} = \frac{6x}{10z} = \frac{3x}{5z} \\ \frac{\partial z}{\partial y} &= \frac{\partial F/\partial y}{\partial F / \partial z} = \frac{8y}{10z} = \frac{4y}{5z} \end{align} \end{split}\]

(5) \(\sin x y+\sin y z+\sin x z=1\)

\[ F(x,y,z) := \sin x y+\sin y z+\sin x z - 1 = 0 \]

とおく。

\[\begin{split} \begin{align} \frac{\partial F}{\partial x} &= y \cos xy + z \cos xz\\ \frac{\partial F}{\partial y} &= x \cos xy + z \cos yz\\ \frac{\partial F}{\partial z} &= y \cos yz + x \cos xz\\ \end{align} \end{split}\]

であり、\(\frac{\partial F}{\partial z} \neq 0\)のため、定理より

\[\begin{split} \begin{align} \frac{\partial z}{\partial x} &= -\frac{\partial F/\partial x}{\partial F / \partial z} = -\frac{y \cos xy + z \cos xz}{y \cos yz + x \cos xz} \\ \frac{\partial z}{\partial y} &= -\frac{\partial F/\partial y}{\partial F / \partial z} = -\frac{x \cos xy + z \cos yz}{y \cos yz + x \cos xz} \end{align} \end{split}\]
import sympy as sp
x, y, z = sp.symbols('x y z')
f = sp.sin(x*y) + sp.sin(y*z) + sp.sin(x*z) - 1
sp.diff(f, y)
\[\displaystyle x \cos{\left(x y \right)} + z \cos{\left(y z \right)}\]

[4]#

[4] \(x=\rho \cos \phi, y=\rho \sin \phi\) のとき, 次のことを証明せよ.

(1) \(x \frac{\partial f}{\partial y}-y \frac{\partial f}{\partial x}=0\) ならば, \(f(x, y)\)\(\rho\) だけの関数である.

(2) \(x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=0\) ならば, \(f(x, y)\)\(\phi\) だけの関数である.

(3) \(\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}=\frac{\partial^2 f}{\partial \rho^2}+\frac{1}{\rho} \frac{\partial f}{\partial \rho}+\frac{1}{\rho^2} \frac{\partial^2 f}{\partial \phi^2}\)

問題略解
\[\begin{split} \begin{aligned} & \rho=\sqrt{x^2+y^2}, \quad \phi = \arctan (y / x)\\ & \frac{\partial \rho}{\partial x} = \frac{x}{\rho}=\cos \phi, \quad \frac{\partial \rho}{\partial y} = \frac{y}{\rho}=\sin \phi \\ & \frac{\partial \phi}{\partial x} = -\frac{y}{\rho^2}= -\frac{\sin \phi}{\rho}, \quad \frac{\partial \phi}{\partial y}=\frac{x}{\rho^2}=\frac{\cos \phi}{\rho} \\ & \frac{\partial f}{\partial x}=\frac{\partial f}{\partial \rho} \frac{\partial \rho}{\partial x}+\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial x}=\cos \phi \frac{\partial f}{\partial \rho}-\frac{\sin \phi}{\rho} \frac{\partial f}{\partial \phi} \\ & \frac{\partial f}{\partial y}=\frac{\partial f}{\partial \rho} \frac{\partial \rho}{\partial y}+\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial y}=\sin \phi \frac{\partial f}{\partial \rho}+\frac{\cos \phi}{\rho} \frac{\partial f}{\partial \phi} \end{aligned} \end{split}\]

(1) \(x(\partial f / \partial y)-y(\partial f / \partial x)=\partial f / \partial \phi=0\). よって, \(f\)\(\phi\) によらず, \(\rho\) だけの関数.

(2) \(x(\partial f / \partial x)+y(\partial f / \partial y)=\rho(\partial f / \partial \rho)=0\). よって, \(f\)\(\rho\) によらず, \(\phi\) だけの関数.

(3)

\[\begin{split} \begin{aligned} \frac{\partial^2 f}{\partial x^2}= & \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial \rho}\left(\frac{\partial f}{\partial x}\right) \cdot \frac{\partial \rho}{\partial x}+\frac{\partial}{\partial \phi}\left(\frac{\partial f}{\partial x}\right) \cdot \frac{\partial \phi}{\partial x} \\ = & \frac{\partial}{\partial \rho}\left(\cos \phi \frac{\partial f}{\partial \rho}-\frac{\sin \phi}{\rho} \frac{\partial f}{\partial \phi}\right) \cdot \cos \phi \\ & +\frac{\partial}{\partial \phi}\left(\cos \phi \frac{\partial f}{\partial \rho}-\frac{\sin \phi}{\rho} \frac{\partial f}{\partial \phi}\right)\left(-\frac{\sin \phi}{\rho}\right) \\ = & \cos ^2 \phi \frac{\partial^2 f}{\partial \rho^2}+\frac{2 \sin \phi \cos \phi}{\rho^2} \frac{\partial f}{\partial \phi}-\frac{2 \sin \phi \cos \phi}{\rho} \frac{\partial^2 f}{\partial \rho \partial \phi} \\ & +\frac{\sin ^2 \phi}{\rho} \frac{\partial f}{\partial \rho}+\frac{\sin ^2 \phi}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} \end{aligned} \end{split}\]

同様にして,

\[\begin{split} \begin{aligned} \frac{\partial^2 f}{\partial y^2}= & \sin ^2 \phi \frac{\partial^2 f}{\partial \rho^2}-\frac{2 \sin \phi \cos \phi}{\rho^2} \frac{\partial f}{\partial \phi}+\frac{2 \sin \phi \cos \phi}{\rho} \frac{\partial^2 f}{\partial \rho \partial \phi} \\ & +\frac{\cos ^2 \phi}{\rho} \frac{\partial f}{\partial \rho}+\frac{\cos ^2 \phi}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} \end{aligned} \end{split}\]

よって,

\[ \frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}=\frac{\partial^2 f}{\partial \rho^2}+\frac{1}{\rho} \frac{\partial f}{\partial \rho}+\frac{1}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} \]

答例

(2) \(x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=0\) ならば, \(f(x, y)\)\(\phi\) だけの関数である.

\(x=\rho \cos \phi, y=\rho \sin \phi\)

合成関数の微分(p.121)より

\[ \frac{\partial f}{\partial \rho} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \rho} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \rho} \]

ここで

\[ \frac{\partial x}{\partial \rho} = \cos \phi = \frac{x}{\rho} ,\quad \frac{\partial y}{\partial \rho} = \sin \phi = \frac{y}{\rho} \]

なので、

\[ \frac{\partial f}{\partial \rho} = \frac{x}{\rho} \frac{\partial f}{\partial x} + \frac{y}{\rho} \frac{\partial f}{\partial y} = \frac{1}{\rho} \left( x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \right) \]

もし

\[ \left( x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \right) \]

がゼロならば\(\frac{\partial f}{\partial \rho}=0\)であり、導関数がゼロということはすなわち\(f\)\(\rho\)に依存せず\(\phi\)のみの関数

合成関数の微分の定理(p.122)

\(z=f(x, y)\) において \(x\)\(y\)は変数\(u\)\(v\)に依存して、

\[ x=g(u, v), \quad y=h(u, v) \]

とすると

\[ d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y, \quad d x=\frac{\partial x}{\partial u} d u+\frac{\partial x}{\partial v} d v, \quad d y=\frac{\partial y}{\partial u} d u+\frac{\partial y}{\partial v} d v \]

あとの2つの式を最初の式に代入して

\[\begin{split} \begin{aligned} d z & =\frac{\partial z}{\partial x}\left(\frac{\partial x}{\partial u} d u+\frac{\partial x}{\partial v} d v\right)+\frac{\partial z}{\partial y}\left(\frac{\partial y}{\partial u} d u+\frac{\partial y}{\partial v} d v\right) \\ & =\left(\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}\right) d u+\left(\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}\right) d v \end{aligned} \end{split}\]

\(z\)\(u\)\(v\)の関数とみなせるから

\[ d z=\frac{\partial z}{\partial u} d u+\frac{\partial z}{\partial v} d v \]

\(du\)\(dv\)の係数(偏導関数の部分)をそれぞれ等しいとおくと

\[\begin{split} \begin{aligned} & \frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\ & \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \end{aligned} \end{split}\]

\(x=\rho \cos \phi, y=\rho \sin \phi\)

(1) \(x \frac{\partial f}{\partial y}-y \frac{\partial f}{\partial x}=0\) ならば, \(f(x, y)\)\(\rho\) だけの関数である.

定理より

\[ \frac{\partial f}{\partial \phi} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \phi} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \phi} \]

ここで

\[ \frac{\partial x}{\partial \phi} = - \rho \sin \phi = -y ,\quad \frac{\partial y}{\partial \phi} = \rho \cos \phi = x \]

であるから

\[ \frac{\partial f}{\partial \phi} = x \frac{\partial f}{\partial y} - y \frac{\partial f}{\partial x} \]

となる

よって\(x \frac{\partial f}{\partial y} -y \frac{\partial f}{\partial x} = 0\)なら、\(f\)\(\phi\)で微分したとき変化がない定数ということなので、\(f\)\(\rho\)だけの関数

(3) \(\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}=\frac{\partial^2 f}{\partial \rho^2}+\frac{1}{\rho} \frac{\partial f}{\partial \rho}+\frac{1}{\rho^2} \frac{\partial^2 f}{\partial \phi^2}\)

考え方:2次の合成関数の偏導関数を求めていく

\[\begin{split} \begin{aligned} \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)\\ &= \frac{\partial}{\partial x}\left( \frac{\partial f}{\partial \rho} \frac{\partial \rho}{\partial x}+\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial x} \right)\\ &= \frac{\partial}{\partial \rho}\left(\frac{\partial f}{\partial x}\right) \cdot \frac{\partial \rho}{\partial x}+\frac{\partial}{\partial \phi}\left(\frac{\partial f}{\partial x}\right) \cdot \frac{\partial \phi}{\partial x} \\ \end{aligned} \end{split}\]

ここで\(\frac{\partial \rho}{\partial x}\)\(\frac{\partial \phi}{\partial x}\)を求めるために、\(\rho, \phi\)の関数型とその導関数を求める必要がある

Step 1. \(\rho, \phi\)の関数型の同定:

\[\begin{split} \begin{aligned} x^2 + y^2 &= \rho^2 \cos^2 \phi + \rho^2 \sin^2 \phi\\ &= \rho^2 \underbrace{ (\cos^2 \phi + \sin^2 \phi) }_{=1} = \rho^2 \quad &\to \rho = \sqrt{x^2 + y^2} \\ \frac{y}{x} &= \frac{\rho \sin \phi}{\rho \cos \phi} = \tan \phi \quad &\to \phi = \arctan(\tan \phi) = \arctan \left(\frac{y}{x} \right) \end{aligned} \end{split}\]

よって

\[ \rho=\sqrt{x^2+y^2}, \quad \phi=\tan ^{-1}\left(\frac{y}{x}\right) \]

Step 2. \(\rho, \phi\)の偏導関数

\[ \frac{\partial \rho}{\partial x}=\frac{x}{\sqrt{x^2+y^2}} = \frac{x}{\rho} =\cos \phi , \quad \frac{\partial \rho}{\partial y}=\frac{y}{\sqrt{x^2+y^2}} = \frac{y}{\rho} =\sin \phi \]
\[ \frac{\partial \phi}{\partial x}=-\frac{y}{x^2+y^2}=-\frac{\sin \phi}{\rho} , \quad \frac{\partial \phi}{\partial y}=\frac{x}{x^2+y^2}=\frac{\cos \phi}{\rho} \]
導出
\[\begin{split} \begin{aligned} \frac{\partial \phi}{\partial x} &= \frac{1}{1 + (y/x)^2}\cdot (-\frac{x'}{x^2} y)\\ &= -\frac{1}{1 + \frac{y^2}{x^2}} \frac{y}{x^2}\\ &= -\frac{1}{\frac{x^2 + y^2}{x^2}} \frac{y}{x^2}\\ &= -\frac{x^2}{x^2 + y^2} \frac{y}{x^2}\\ &= -\frac{y}{x^2+y^2}\\ &= -\frac{\sin \phi}{\rho}\\ \\ \frac{\partial \phi}{\partial y} &= \frac{1}{1 + (y/x)^2}\cdot \frac{1}{x}\\ &= \frac{x}{x^2 + y^2}\\ &= \frac{\cos \phi}{\rho}\\ \end{aligned} \end{split}\]

Step 3. \(f\)の偏導関数

合成関数の偏微分

\[\begin{split} \begin{gathered} \frac{\partial f}{\partial x}=\frac{\partial f}{\partial \rho} \frac{\partial \rho}{\partial x}+\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial x} \\ \frac{\partial f}{\partial y}=\frac{\partial f}{\partial \rho} \frac{\partial \rho}{\partial y}+\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial y} \end{gathered} \end{split}\]

に代入すると

\[\begin{split} \begin{aligned} & \frac{\partial f}{\partial x}=\frac{\partial f}{\partial \rho} \cos \phi-\frac{\partial f}{\partial \phi} \frac{\sin \phi}{\rho} \\ & \frac{\partial f}{\partial y}=\frac{\partial f}{\partial \rho} \sin \phi+\frac{\partial f}{\partial \phi} \frac{\cos \phi}{\rho} \end{aligned} \end{split}\]

Step 4. \(f\)の2次の偏導関数

\[\begin{split} \begin{aligned} \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)\\ &= \frac{\partial}{\partial x}\left( \frac{\partial f}{\partial \rho} \frac{\partial \rho}{\partial x}+\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial x} \right)\\ &= \frac{\partial}{\partial \rho}\left(\frac{\partial f}{\partial x}\right) \cdot \frac{\partial \rho}{\partial x}+\frac{\partial}{\partial \phi}\left(\frac{\partial f}{\partial x}\right) \cdot \frac{\partial \phi}{\partial x} \\ &= \frac{\partial}{\partial \rho}\left(\frac{\partial f}{\partial x}\right) \cdot \cos \phi + \frac{\partial}{\partial \phi}\left(\frac{\partial f}{\partial x}\right) \cdot \left( -\frac{\sin \phi}{\rho} \right) \\ &= \frac{\partial}{\partial \rho}\left( \frac{\partial f}{\partial \rho} \frac{\partial \rho}{\partial x}+\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial x} \right) \cdot \cos \phi + \frac{\partial}{\partial \phi}\left( \frac{\partial f}{\partial \rho} \frac{\partial \rho}{\partial x}+\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial x} \right) \cdot \left( -\frac{\sin \phi}{\rho} \right) \\ &= \frac{\partial}{\partial \rho}\left(\cos \phi \frac{\partial f}{\partial \rho}-\frac{\sin \phi}{\rho} \frac{\partial f}{\partial \phi}\right) \cdot \cos \phi + \frac{\partial}{\partial \phi}\left(\cos \phi \frac{\partial f}{\partial \rho}-\frac{\sin \phi}{\rho} \frac{\partial f}{\partial \phi}\right)\left(-\frac{\sin \phi}{\rho}\right) \\ &= \frac{\partial}{\partial \rho}\left(\cos^2 \phi \frac{\partial f}{\partial \rho} \right) - \frac{\partial}{\partial \rho} \left( \frac{\sin \phi \cos \phi}{\rho} \frac{\partial f}{\partial \phi}\right) - \frac{\partial}{\partial \phi} \left( \frac{\sin \phi \cos \phi}{\rho} \frac{\partial f}{\partial \rho} \right) + \frac{\partial}{\partial \phi} \left( \frac{\sin^2 \phi}{\rho^2} \frac{\partial f}{\partial \phi}\right) \\ &= \cos^2 \phi \frac{\partial^2 f}{\partial \rho^2} - \frac{\partial}{\partial \rho} \left( \frac{\sin \phi \cos\phi}{\rho} \frac{\partial f}{\partial \phi}\right) - \frac{\partial}{\partial \phi} \left( \frac{\sin \phi \cos \phi}{\rho} \frac{\partial f}{\partial \rho} \right) + \frac{\sin^2 \phi}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} \\ &= \cos ^2 \phi \frac{\partial^2 f}{\partial \rho^2}+\frac{2 \sin \phi \cos \phi}{\rho^2} \frac{\partial f}{\partial \phi}-\frac{2 \sin \phi \cos \phi}{\rho} \frac{\partial^2 f}{\partial \rho \partial \phi} +\frac{\sin ^2 \phi}{\rho} \frac{\partial f}{\partial \rho}+\frac{\sin ^2 \phi}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} \\ \\ \end{aligned} \end{split}\]

最後の2行がつながらないが、うまくやればいけそう?

\[\begin{split} \begin{aligned} \frac{\partial^2 f}{\partial y^2} &= \frac{\partial }{\partial y} \left( \frac{\partial f}{\partial y} \right)\\ &= \frac{\partial }{\partial y} \left( \frac{\partial f}{\partial \rho} \frac{\partial \rho}{\partial y}+\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial y} \right)\\ &= \frac{\partial}{\partial \rho}\left(\frac{\partial f}{\partial y}\right) \cdot \frac{\partial \rho}{\partial y}+\frac{\partial}{\partial \phi}\left(\frac{\partial f}{\partial y}\right) \cdot \frac{\partial \phi}{\partial y} \\ &= \frac{\partial}{\partial \rho}\left(\frac{\partial f}{\partial y}\right) \cdot \sin \phi + \frac{\partial}{\partial \phi}\left(\frac{\partial f}{\partial y}\right) \cdot \frac{\cos \phi}{\rho} \\ &= \frac{\partial}{\partial \rho}\left( \frac{\partial f}{\partial \rho} \frac{\partial \rho}{\partial y}+\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial y} \right) \cdot \sin \phi + \frac{\partial}{\partial \phi}\left( \frac{\partial f}{\partial \rho} \frac{\partial \rho}{\partial y}+\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial y} \right) \cdot \frac{\cos \phi}{\rho} \\ &= \frac{\partial}{\partial \rho} \left( \frac{\partial f}{\partial \rho} \sin \phi +\frac{\partial f}{\partial \phi} \frac{\cos \phi}{\rho} \right) \cdot \sin \phi + \frac{\partial}{\partial \phi} \left( \frac{\partial f}{\partial \rho} \sin \phi +\frac{\partial f}{\partial \phi} \frac{\cos \phi}{\rho} \right) \cdot \frac{\cos \phi}{\rho} \\ &= \sin ^2 \phi \frac{\partial^2 f}{\partial \rho^2}-\frac{2 \sin \phi \cos \phi}{\rho^2} \frac{\partial f}{\partial \phi}+\frac{2 \sin \phi \cos \phi}{\rho} \frac{\partial^2 f}{\partial \rho \partial \phi} + \frac{\cos ^2 \phi}{\rho} \frac{\partial f}{\partial \rho}+\frac{\cos ^2 \phi}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} \end{aligned} \end{split}\]

Step 5. \(f\)の2次の偏導関数の和を求める

\[ \frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}=\frac{\partial^2 f}{\partial \rho^2}\left(\cos ^2 \phi+\sin ^2 \phi\right)+\frac{\partial^2 f}{\partial \phi^2}\left(\frac{\sin ^2 \phi+\cos ^2 \phi}{\rho^2}\right)+\frac{1}{\rho} \frac{\partial f}{\partial \rho} \]

\(\cos ^2 \phi+\sin ^2 \phi=1\)のため

\[ \frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}=\frac{\partial^2 f}{\partial \rho^2}+\frac{1}{\rho} \frac{\partial f}{\partial \rho}+\frac{1}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} \]

ということらしい

[5]#

[5] 3 つの変数 \(x, y, z\) の間に \(F(x, y, z)=0\) の関係がある. 次のことを示せ.

(1) \(\left(\frac{\partial y}{\partial x}\right)_z=1 /\left(\frac{\partial x}{\partial y}\right)_z\)

(2) \(\left(\frac{\partial x}{\partial y}\right)_z\left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y=-1\)

(1) \(\left(\frac{\partial y}{\partial x}\right)_z=1 /\left(\frac{\partial x}{\partial y}\right)_z\)

\(\left(\frac{\partial y}{\partial x}\right)_z\)\(z\)を固定したもとでの偏導関数。よって\(y\)\(x\)だけの関数であり、1変数の関数である。

逆関数の微分公式

\[ \frac{d x}{d y}=1 / \frac{d y}{d x} \quad\left(\frac{d y}{d x} \neq 0 \text { のとき }\right) \]

より

\[ \left(\frac{\partial y}{\partial x}\right)_z=1 /\left(\frac{\partial x}{\partial y}\right)_z \]

(2) \(\left(\frac{\partial x}{\partial y}\right)_z\left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y=-1\)

略解

\(z\)\(x, y\) の関数だから,

\[ d z=\left(\frac{\partial z}{\partial x}\right)_y d x+\left(\frac{\partial z}{\partial y}\right)_x d y \]

ところで, \((\partial x / \partial y)_z\) は, \(z\) を一定, すなわち, \(d z=0\) としたときの \(d x / d y\) であるから,

上の式の両辺を \(d y\) で割って,

\[ 0=\left(\frac{\partial z}{\partial x}\right)_y\left(\frac{\partial x}{\partial y}\right)_z+\left(\frac{\partial z}{\partial y}\right)_x \]

(1)により, \((\partial z / \partial y)_x=1 /(\partial y / \partial z)_x\) だから $\( \left(\frac{\partial z}{\partial x}\right)_y\left(\frac{\partial x}{\partial y}\right)_z\left(\frac{\partial y}{\partial z}\right)_x+1=0 \)$

よって,証明する式を得る.

なぜこうではないのか?:

定理より

\[\begin{split} \left(\frac{\partial x}{\partial y}\right)_z = -\frac{F_y(x, y, z)}{F_x(x, y, z)}\\ \left(\frac{\partial y}{\partial z}\right)_x = -\frac{F_z(x, y, z)}{F_y(x, y, z)}\\ \left(\frac{\partial z}{\partial x}\right)_y = -\frac{F_x(x, y, z)}{F_z(x, y, z)}\\ \end{split}\]

問題の積は

\[\begin{split} \begin{aligned} \left(\frac{\partial x}{\partial y}\right)_z\left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y &= -\frac{F_y(x, y, z)}{F_x(x, y, z)} \times -\frac{F_z(x, y, z)}{F_y(x, y, z)} \times -\frac{F_x(x, y, z)}{F_z(x, y, z)} \\ &= (-1)^3 \frac{F_x(x, y, z) F_y(x, y, z) F_z(x, y, z) }{F_x(x, y, z) F_y(x, y, z)F_z(x, y, z)} \\ &= -1 \end{aligned} \end{split}\]

[6]#

[6] \(P(x, y) d x+Q(x, y) d y\) が全微分であるならば,

\[ \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \]

であることを示せ.

ある関数\(f(x,y)\)が存在して、

\[ df = P(x, y) dx + Q(x, y) dy \]

であるとする。

\[ P(x, y) = \frac{\partial f}{\partial x} = f_x ,\quad Q(x, y) = \frac{\partial f}{\partial y} = f_y \]

であるため、

\[ \frac{\partial P}{\partial y} = f_{xy} ,\quad \frac{\partial Q}{\partial x} = f_{yx} \]

を意味する。

定理より、

\[ f_{xy} = f_{yx} \]

であるため

\[ \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \]

が成り立つ。

[7]#

[7] 関数 \(F(x, y)\) がパラメータ \(\lambda\) と定数 \(p\) に対して,

\[ F(\lambda x, \lambda y)=\lambda^p F(x, y) \]

をみたすとき, \(p\) 次の同次関数(homogeneous function)であるという. このとき, 次式 を証明せよ。

\[ x \frac{\partial F}{\partial x}+y \frac{\partial F}{\partial y}=p F \]

Eulerの等式というらしい(参考)。

Eulerの等式

\(F: \mathbb{R}^2 \to \mathbb{R}\)\(p\)次同次関数とする。このとき\(F(x,y)\)について、

\[ x \frac{\partial F}{\partial x}+y \frac{\partial F}{\partial y}=p F \]

が成立する。

\[ F(\lambda x, \lambda y) = \lambda^p F(x, y) \]

の両辺を\(\lambda\)で微分すると、

左辺は、\(F(\lambda x, \lambda y) = F(u(\lambda), v(\lambda))\)とおくと、全微分の合成関数の定理より

\[ \frac{dF(u(\lambda), v(\lambda))}{d\lambda} = \frac{\partial F}{\partial u} \frac{d u}{d \lambda} + \frac{\partial F}{\partial v} \frac{d v}{d \lambda} = \frac{\partial F}{\partial u} x + \frac{\partial F}{\partial v} y \]

右辺は

\[ \frac{ d \lambda^p F(x, y) }{d \lambda} = p\lambda^{p-1} F(x,y) \]

整理すると

\[ \frac{\partial F}{\partial u} x + \frac{\partial F}{\partial v} y = p\lambda^{p-1} F(x,y) \]

ここで\(\lambda=1\)とすると、\(u=x, v=y\)なので

\[ \frac{\partial F}{\partial x} x + \frac{\partial F}{\partial y} y = p F(x,y) \]

[8]#

[8] \(x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta\) のとき, 次式を証明せよ.

\[ \frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2} =\frac{\partial^2 f}{\partial r^2}+\frac{2}{r} \frac{\partial f}{\partial r}+\frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}+\frac{1}{r^2} \cot \theta \frac{\partial f}{\partial \theta}+\frac{1}{r^2 \sin ^2 \theta} \frac{\partial^2 f}{\partial \phi^2} \]

左辺は\(f(x,y,z)\)(直交座標系)だが右辺は\(f(r,\theta,\phi)\)(球面座標系)となっている。両者の関連を導く。

\(x\)\(r,\theta,\phi\)の関数なので、

1階微分は

\[ \frac{\partial f}{\partial x} =\frac{\partial f}{\partial r} \frac{\partial r}{\partial x} +\frac{\partial f}{\partial \theta} \frac{\partial \theta}{\partial x} +\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial x} \]

2階微分は

\[\begin{split} \begin{aligned} \frac{\partial^2 f}{\partial^2 x} &=\frac{\partial }{\partial x} \left( \frac{\partial f}{\partial x} \right)\\ &=\frac{\partial }{\partial x} \left(\frac{\partial f}{\partial r} \frac{\partial r}{\partial x} +\frac{\partial f}{\partial \theta} \frac{\partial \theta}{\partial x} +\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial x}\right) \\ &= \frac{\partial}{\partial r}\left(\frac{\partial f}{\partial x}\right) \cdot \frac{\partial r}{\partial x} +\frac{\partial}{\partial \theta}\left(\frac{\partial f}{\partial x}\right) \cdot \frac{\partial \theta}{\partial x} +\frac{\partial}{\partial \phi}\left(\frac{\partial f}{\partial x}\right) \cdot \frac{\partial \phi}{\partial x} \quad (おそらく、高階微分の順序を入れ替えられるため) \end{aligned} \end{split}\]

\(r,\theta,\phi\)

\[ r=\sqrt{x^2+y^2+z^2}, \quad \theta=\arctan(\sqrt{x^2+y^2} / z), \quad \phi=\arctan (y / x) \]

であることを知っていればまだ求められそう

\(r\)の導関数)

\[\begin{split} \begin{aligned} \frac{\partial r}{\partial x} &= \frac{1}{2} (x^2+y^2+z^2)^{-1/2} 2x =\frac{x}{r} =\sin \theta \cos \phi \\ \frac{\partial r}{\partial y} &=\frac{y}{r} = \sin \theta \sin \phi \\ \frac{\partial r}{\partial z} &=\frac{z}{r} = \cos \theta \end{aligned} \end{split}\]

\(=\sin \theta \cos \phi\)とかはよくわからない

\(\theta\)の導関数)

公式より

\(\frac{d}{d x} \arctan x = \frac{1}{1+x^2}\)

なので

\(u=\sqrt{x^2+y^2} / z\)とおくと

\[\begin{split} \begin{aligned} \frac{\partial \theta}{\partial x} &= \frac{\partial \arctan(u)}{\partial u} \cdot \frac{\partial u}{\partial x}\\ &= \frac{1}{1 + u^2} \cdot \frac{1}{z} \frac{1}{2} (x^2+y^2)^{-1/2} 2x\\ &= \frac{1}{1 + \frac{x^2+y^2}{z^2}} \cdot \frac{x}{z \sqrt{x^2+y^2}}\\ &= \frac{1}{\frac{x^2+y^2 + z^2}{z^2}} \cdot \frac{x}{z \sqrt{x^2+y^2}}\\ &= \frac{z^2}{r^2} \cdot \frac{x}{z \sqrt{x^2+y^2}}\\ &= \frac{zx}{r^2 \sqrt{x^2+y^2}}\\ \end{aligned} \end{split}\]

同様に

\[\begin{split} \begin{aligned} \frac{\partial \theta}{\partial y} &= \frac{zy}{r^2 \sqrt{x^2+y^2}}\\ \end{aligned} \end{split}\]

またzは

\[\begin{split} \begin{aligned} \frac{\partial \theta}{\partial z} &= \frac{\partial \arctan(u)}{\partial u} \cdot \frac{\partial u}{\partial z}\\ &= \frac{1}{1 + u^2} \cdot -\frac{1}{z^2} \sqrt{x^2+y^2} \\ &= \frac{z^2}{r^2} \cdot -\frac{\sqrt{x^2+y^2}}{z^2}\\ &= -\frac{\sqrt{x^2+y^2}}{r^2}\\ \end{aligned} \end{split}\]

まとめると

\[ \frac{\partial \theta}{\partial x} = \frac{zx}{r^2 \sqrt{x^2+y^2}} ,\quad \frac{\partial \theta}{\partial y}= \frac{zy}{r^2 \sqrt{x^2+y^2}} ,\quad \frac{\partial \theta}{\partial z}= -\frac{\sqrt{x^2+y^2}}{r^2} \]

\(\phi\)の導関数)

公式より

\(\frac{d}{d x} \arctan x = \frac{1}{1+x^2}\)

なので

\[\begin{split} \begin{aligned} \frac{\partial \phi}{\partial x} &= \frac{\partial \arctan(y/x)}{\partial (y/x)} \cdot \frac{\partial (y/x)}{\partial x}\\ &= \frac{1}{1+\frac{y^2}{x^2}} (-\frac{y}{x^2})\\ &= -\frac{y}{x^2+y^2}\\ \\ \frac{\partial \theta}{\partial y} &= \frac{\partial \arctan(y/x)}{\partial (y/x)} \cdot \frac{\partial (y/x)}{\partial y}\\ &= \frac{1}{1+\frac{y^2}{x^2}} \cdot \frac{1}{x}\\ &= \frac{1}{\frac{x^2 + y^2}{x^2}} \cdot \frac{1}{x}\\ &= \frac{x^2}{x^2 + y^2} \cdot \frac{1}{x}\\ &= \frac{x}{x^2 + y^2}\\ \\ \frac{\partial \theta}{\partial z} &=0 \end{aligned} \end{split}\]

(複雑すぎてキャパオーバー

関連知識

問題冒頭の

\[\begin{split} \begin{cases} x=r \sin \theta \cos \phi\\ y=r \sin \theta \sin \phi\\ z=r \cos \theta \end{cases} \end{split}\]

は球面座標から直交座標への変換のこと(球面座標系 - Wikipedia

直交座標系(Cartesian coordinates system)におけるLaplacian operator(勾配の2階微分バージョン)

\[ \Delta f =\nabla^2 f =\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2} \]

球面座標系(spherical coordinates system)におけるLaplacian

\[ \Delta f = \frac{\partial^2 f}{\partial r^2}+\frac{2}{r} \frac{\partial f}{\partial r}+\frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}+\frac{1}{r^2} \cot \theta \frac{\partial f}{\partial \theta}+\frac{1}{r^2 \sin ^2 \theta} \frac{\partial^2 f}{\partial \phi^2} \]